树突状细胞衍生的外泌体促进肌腱愈合并调节巨噬细胞极化以预防肌腱病变

IF 6.6 2区 医学 Q1 NANOSCIENCE & NANOTECHNOLOGY International Journal of Nanomedicine Pub Date : 2024-11-13 eCollection Date: 2024-01-01 DOI:10.2147/IJN.S466363
Rao Chen, Liya Ai, Jiying Zhang, Dong Jiang
{"title":"树突状细胞衍生的外泌体促进肌腱愈合并调节巨噬细胞极化以预防肌腱病变","authors":"Rao Chen, Liya Ai, Jiying Zhang, Dong Jiang","doi":"10.2147/IJN.S466363","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Tendon injuries present a significant challenge for independent repair, and can progress into tendinopathy over time, highlighting the importance of early intervention. Dendritic cell-derived exosomes (DEXs) has been shown to shift the polarization of M1 macrophages, the predominant inflammatory cells in the early stages of tendon injury. This study introduces a therapeutic approach that effectively manages inflammation while promoting regeneration in the treatment of tendinopathy.</p><p><strong>Methods: </strong>The purification and characterization of DEXs were meticulously conducted. Experiments were carried out using an Achilles tendon rupture mouse model, with weekly DEXs treatment starting on postoperative day (POD) 4. In vitro, the function of DEXs was assessed by coculturing them with tendon stem/progenitor cells (TSPCs) in culture medium containing IL-1β. Tendon healing progress was evaluated using Sirius Red staining, Masson's trichrome staining, biomechanical testing, and immunofluorescence microscopy. The inflammatory microenvironment of injured tendons was evaluated using the Luminex procedure and flow cytometry analysis.</p><p><strong>Results: </strong>DEXs treatment significantly enhanced tendon cell differentiation, promoted collagen type I synthesis, and inhibited collagen type III synthesis, thereby expediting tendon healing. Furthermore, DEXs treatment improved the inflammatory microenvironment by reducing multiple cytokines (IL-1β, IL-4, IL-6, TNF-α, and IFN-γ) and induced the conversion of M1 macrophages to M2 macrophages by activating the PI3K/AKT pathway.</p><p><strong>Conclusion: </strong>DEXs demonstrated a potent ability to promote tendon healing while ameliorating the inflammatory microenvironment, suggesting their potential as a therapeutic approach to prevent the development of tendinopathy.</p>","PeriodicalId":14084,"journal":{"name":"International Journal of Nanomedicine","volume":"19 ","pages":"11701-11718"},"PeriodicalIF":6.6000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11571930/pdf/","citationCount":"0","resultStr":"{\"title\":\"Dendritic Cell-Derived Exosomes Promote Tendon Healing and Regulate Macrophage Polarization in Preventing Tendinopathy.\",\"authors\":\"Rao Chen, Liya Ai, Jiying Zhang, Dong Jiang\",\"doi\":\"10.2147/IJN.S466363\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Tendon injuries present a significant challenge for independent repair, and can progress into tendinopathy over time, highlighting the importance of early intervention. Dendritic cell-derived exosomes (DEXs) has been shown to shift the polarization of M1 macrophages, the predominant inflammatory cells in the early stages of tendon injury. This study introduces a therapeutic approach that effectively manages inflammation while promoting regeneration in the treatment of tendinopathy.</p><p><strong>Methods: </strong>The purification and characterization of DEXs were meticulously conducted. Experiments were carried out using an Achilles tendon rupture mouse model, with weekly DEXs treatment starting on postoperative day (POD) 4. In vitro, the function of DEXs was assessed by coculturing them with tendon stem/progenitor cells (TSPCs) in culture medium containing IL-1β. Tendon healing progress was evaluated using Sirius Red staining, Masson's trichrome staining, biomechanical testing, and immunofluorescence microscopy. The inflammatory microenvironment of injured tendons was evaluated using the Luminex procedure and flow cytometry analysis.</p><p><strong>Results: </strong>DEXs treatment significantly enhanced tendon cell differentiation, promoted collagen type I synthesis, and inhibited collagen type III synthesis, thereby expediting tendon healing. Furthermore, DEXs treatment improved the inflammatory microenvironment by reducing multiple cytokines (IL-1β, IL-4, IL-6, TNF-α, and IFN-γ) and induced the conversion of M1 macrophages to M2 macrophages by activating the PI3K/AKT pathway.</p><p><strong>Conclusion: </strong>DEXs demonstrated a potent ability to promote tendon healing while ameliorating the inflammatory microenvironment, suggesting their potential as a therapeutic approach to prevent the development of tendinopathy.</p>\",\"PeriodicalId\":14084,\"journal\":{\"name\":\"International Journal of Nanomedicine\",\"volume\":\"19 \",\"pages\":\"11701-11718\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11571930/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Nanomedicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2147/IJN.S466363\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Nanomedicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/IJN.S466363","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

导言:肌腱损伤是独立修复的重大挑战,随着时间的推移会发展成肌腱病,这凸显了早期干预的重要性。树突状细胞衍生的外泌体(DEXs)已被证明能改变M1巨噬细胞的极化,M1巨噬细胞是肌腱损伤早期的主要炎症细胞。本研究介绍了一种在治疗肌腱病时有效控制炎症同时促进再生的治疗方法:方法:对 DEXs 的纯化和表征进行了细致的研究。在体外,通过在含IL-1β的培养基中与肌腱干/祖细胞(TSPCs)共培养来评估DEXs的功能。使用天狼星红染色、马森三色染色、生物力学测试和免疫荧光显微镜评估了肌腱愈合的进展。使用 Luminex 程序和流式细胞术分析评估了受伤肌腱的炎症微环境:结果:DEXs 能明显促进肌腱细胞分化,促进 I 型胶原蛋白合成,抑制 III 型胶原蛋白合成,从而加快肌腱愈合。此外,DEXs 还能通过减少多种细胞因子(IL-1β、IL-4、IL-6、TNF-α 和 IFN-γ)改善炎症微环境,并通过激活 PI3K/AKT 通路诱导 M1 巨噬细胞向 M2 巨噬细胞转化:结论:DEXs具有促进肌腱愈合的强大能力,同时还能改善炎症微环境,因此有望成为预防肌腱病发展的一种治疗方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dendritic Cell-Derived Exosomes Promote Tendon Healing and Regulate Macrophage Polarization in Preventing Tendinopathy.

Introduction: Tendon injuries present a significant challenge for independent repair, and can progress into tendinopathy over time, highlighting the importance of early intervention. Dendritic cell-derived exosomes (DEXs) has been shown to shift the polarization of M1 macrophages, the predominant inflammatory cells in the early stages of tendon injury. This study introduces a therapeutic approach that effectively manages inflammation while promoting regeneration in the treatment of tendinopathy.

Methods: The purification and characterization of DEXs were meticulously conducted. Experiments were carried out using an Achilles tendon rupture mouse model, with weekly DEXs treatment starting on postoperative day (POD) 4. In vitro, the function of DEXs was assessed by coculturing them with tendon stem/progenitor cells (TSPCs) in culture medium containing IL-1β. Tendon healing progress was evaluated using Sirius Red staining, Masson's trichrome staining, biomechanical testing, and immunofluorescence microscopy. The inflammatory microenvironment of injured tendons was evaluated using the Luminex procedure and flow cytometry analysis.

Results: DEXs treatment significantly enhanced tendon cell differentiation, promoted collagen type I synthesis, and inhibited collagen type III synthesis, thereby expediting tendon healing. Furthermore, DEXs treatment improved the inflammatory microenvironment by reducing multiple cytokines (IL-1β, IL-4, IL-6, TNF-α, and IFN-γ) and induced the conversion of M1 macrophages to M2 macrophages by activating the PI3K/AKT pathway.

Conclusion: DEXs demonstrated a potent ability to promote tendon healing while ameliorating the inflammatory microenvironment, suggesting their potential as a therapeutic approach to prevent the development of tendinopathy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Nanomedicine
International Journal of Nanomedicine NANOSCIENCE & NANOTECHNOLOGY-PHARMACOLOGY & PHARMACY
CiteScore
14.40
自引率
3.80%
发文量
511
审稿时长
1.4 months
期刊介绍: The International Journal of Nanomedicine is a globally recognized journal that focuses on the applications of nanotechnology in the biomedical field. It is a peer-reviewed and open-access publication that covers diverse aspects of this rapidly evolving research area. With its strong emphasis on the clinical potential of nanoparticles in disease diagnostics, prevention, and treatment, the journal aims to showcase cutting-edge research and development in the field. Starting from now, the International Journal of Nanomedicine will not accept meta-analyses for publication.
期刊最新文献
How Nanoparticles Help in Combating Chronic Wound Biofilms Infection? Unveiling the Hidden Risks: An Update Decade-Long Analysis of Abraxane-Related Adverse Events from the FAERS Database. Nanoscale Generators for Tissue Healing: A Perspective. Direct Labeling of Gold Nanoparticles with Iodine-131 for Tumor Radionuclide Therapy. Comparative Study and Transcriptomic Analysis on the Antifungal Mechanism of Ag Nanoparticles and Nanowires Against Trichosporon asahii.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1