Calvin Xu, Andreas Obers, Minyi Qin, Alice Brandli, Joelyn Wong, Xin Huang, Allison Clatch, Aly Fayed, Graham Starkey, Rohit D'Costa, Claire L Gordon, Jeffrey Y W Mak, David P Fairlie, Lynette Beattie, Laura K Mackay, Dale I Godfrey, Hui-Fern Koay
{"title":"嘌呤能信号对 IFN-γ 和 IL-4 协同产生的非常规 T 细胞的选择性调控。","authors":"Calvin Xu, Andreas Obers, Minyi Qin, Alice Brandli, Joelyn Wong, Xin Huang, Allison Clatch, Aly Fayed, Graham Starkey, Rohit D'Costa, Claire L Gordon, Jeffrey Y W Mak, David P Fairlie, Lynette Beattie, Laura K Mackay, Dale I Godfrey, Hui-Fern Koay","doi":"10.1084/jem.20240354","DOIUrl":null,"url":null,"abstract":"<p><p>Unconventional T cells, including mucosal-associated invariant T (MAIT), natural killer T (NKT), and gamma-delta T (γδT) cells, comprise distinct T-bet+, IFN-γ+ and RORγt+, IL-17+ subsets which play differential roles in health and disease. NKT1 cells are susceptible to ARTC2-mediated P2X7 receptor (P2RX7) activation, but the effects on other unconventional T-cell types are unknown. Here, we show that MAIT, γδT, and NKT cells express P2RX7 and are sensitive to P2RX7-mediated cell death. Mouse peripheral T-bet+ MAIT1, γδT1, and NKT1 cells, especially in liver, co-express ARTC2 and P2RX7. These markers could be further upregulated upon exposure to retinoic acid. Blocking ARTC2 or inhibiting P2RX7 protected MAIT1, γδT1, and NKT1 cells from cell death, enhanced their survival in vivo, and increased the number of IFN-γ-secreting cells without affecting IL-17 production. Importantly, this revealed the existence of IFN-γ and IL-4 co-producing unconventional T-cell populations normally lost upon isolation due to ARTC2/P2RX7-induced death. Administering extracellular NAD in vivo activated this pathway, depleting P2RX7-sensitive unconventional T cells. Our study reveals ARTC2/P2RX7 as a common regulatory axis modulating the unconventional T-cell compartment, affecting the viability of IFN-γ- and IL-4-producing T cells, offering important insights to facilitate future studies into how these cells can be regulated in health and disease.</p>","PeriodicalId":15760,"journal":{"name":"Journal of Experimental Medicine","volume":"221 12","pages":""},"PeriodicalIF":12.6000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Selective regulation of IFN-γ and IL-4 co-producing unconventional T cells by purinergic signaling.\",\"authors\":\"Calvin Xu, Andreas Obers, Minyi Qin, Alice Brandli, Joelyn Wong, Xin Huang, Allison Clatch, Aly Fayed, Graham Starkey, Rohit D'Costa, Claire L Gordon, Jeffrey Y W Mak, David P Fairlie, Lynette Beattie, Laura K Mackay, Dale I Godfrey, Hui-Fern Koay\",\"doi\":\"10.1084/jem.20240354\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Unconventional T cells, including mucosal-associated invariant T (MAIT), natural killer T (NKT), and gamma-delta T (γδT) cells, comprise distinct T-bet+, IFN-γ+ and RORγt+, IL-17+ subsets which play differential roles in health and disease. NKT1 cells are susceptible to ARTC2-mediated P2X7 receptor (P2RX7) activation, but the effects on other unconventional T-cell types are unknown. Here, we show that MAIT, γδT, and NKT cells express P2RX7 and are sensitive to P2RX7-mediated cell death. Mouse peripheral T-bet+ MAIT1, γδT1, and NKT1 cells, especially in liver, co-express ARTC2 and P2RX7. These markers could be further upregulated upon exposure to retinoic acid. Blocking ARTC2 or inhibiting P2RX7 protected MAIT1, γδT1, and NKT1 cells from cell death, enhanced their survival in vivo, and increased the number of IFN-γ-secreting cells without affecting IL-17 production. Importantly, this revealed the existence of IFN-γ and IL-4 co-producing unconventional T-cell populations normally lost upon isolation due to ARTC2/P2RX7-induced death. Administering extracellular NAD in vivo activated this pathway, depleting P2RX7-sensitive unconventional T cells. Our study reveals ARTC2/P2RX7 as a common regulatory axis modulating the unconventional T-cell compartment, affecting the viability of IFN-γ- and IL-4-producing T cells, offering important insights to facilitate future studies into how these cells can be regulated in health and disease.</p>\",\"PeriodicalId\":15760,\"journal\":{\"name\":\"Journal of Experimental Medicine\",\"volume\":\"221 12\",\"pages\":\"\"},\"PeriodicalIF\":12.6000,\"publicationDate\":\"2024-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Experimental Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1084/jem.20240354\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1084/jem.20240354","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/19 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
非常规 T 细胞,包括粘膜相关不变 T(MAIT)、自然杀伤 T(NKT)和γ-δT(γδT)细胞,由不同的 T-bet+、IFN-γ+ 和 RORγt+ 、IL-17+ 亚群组成,它们在健康和疾病中发挥着不同的作用。NKT1 细胞易受 ARTC2 介导的 P2X7 受体(P2RX7)激活的影响,但对其他非常规 T 细胞类型的影响尚不清楚。在这里,我们发现 MAIT、γδT 和 NKT 细胞表达 P2RX7,并对 P2RX7 介导的细胞死亡敏感。小鼠外周 T-bet+ MAIT1、γδT1 和 NKT1 细胞(尤其是在肝脏中)共同表达 ARTC2 和 P2RX7。暴露于维甲酸后,这些标志物会进一步上调。阻断 ARTC2 或抑制 P2RX7 能保护 MAIT1、γδT1 和 NKT1 细胞免于细胞死亡,提高它们在体内的存活率,并增加分泌 IFN-γ 的细胞数量,而不影响 IL-17 的产生。重要的是,这揭示了IFN-γ和IL-4共同产生的非常规T细胞群的存在,这些细胞群通常会因ARTC2/P2RX7诱导的死亡而在分离后丢失。在体内施用细胞外 NAD 激活了这一途径,耗尽了对 P2RX7 敏感的非常规 T 细胞。我们的研究揭示了 ARTC2/P2RX7 是调节非常规 T 细胞区系的共同调控轴,它影响着产生 IFN-γ 和 IL-4 的 T 细胞的活力,为今后研究这些细胞在健康和疾病中如何被调控提供了重要启示。
Selective regulation of IFN-γ and IL-4 co-producing unconventional T cells by purinergic signaling.
Unconventional T cells, including mucosal-associated invariant T (MAIT), natural killer T (NKT), and gamma-delta T (γδT) cells, comprise distinct T-bet+, IFN-γ+ and RORγt+, IL-17+ subsets which play differential roles in health and disease. NKT1 cells are susceptible to ARTC2-mediated P2X7 receptor (P2RX7) activation, but the effects on other unconventional T-cell types are unknown. Here, we show that MAIT, γδT, and NKT cells express P2RX7 and are sensitive to P2RX7-mediated cell death. Mouse peripheral T-bet+ MAIT1, γδT1, and NKT1 cells, especially in liver, co-express ARTC2 and P2RX7. These markers could be further upregulated upon exposure to retinoic acid. Blocking ARTC2 or inhibiting P2RX7 protected MAIT1, γδT1, and NKT1 cells from cell death, enhanced their survival in vivo, and increased the number of IFN-γ-secreting cells without affecting IL-17 production. Importantly, this revealed the existence of IFN-γ and IL-4 co-producing unconventional T-cell populations normally lost upon isolation due to ARTC2/P2RX7-induced death. Administering extracellular NAD in vivo activated this pathway, depleting P2RX7-sensitive unconventional T cells. Our study reveals ARTC2/P2RX7 as a common regulatory axis modulating the unconventional T-cell compartment, affecting the viability of IFN-γ- and IL-4-producing T cells, offering important insights to facilitate future studies into how these cells can be regulated in health and disease.
期刊介绍:
Since its establishment in 1896, the Journal of Experimental Medicine (JEM) has steadfastly pursued the publication of enduring and exceptional studies in medical biology. In an era where numerous publishing groups are introducing specialized journals, we recognize the importance of offering a distinguished platform for studies that seamlessly integrate various disciplines within the pathogenesis field.
Our unique editorial system, driven by a commitment to exceptional author service, involves two collaborative groups of editors: professional editors with robust scientific backgrounds and full-time practicing scientists. Each paper undergoes evaluation by at least one editor from both groups before external review. Weekly editorial meetings facilitate comprehensive discussions on papers, incorporating external referee comments, and ensure swift decisions without unnecessary demands for extensive revisions.
Encompassing human studies and diverse in vivo experimental models of human disease, our focus within medical biology spans genetics, inflammation, immunity, infectious disease, cancer, vascular biology, metabolic disorders, neuroscience, and stem cell biology. We eagerly welcome reports ranging from atomic-level analyses to clinical interventions that unveil new mechanistic insights.