{"title":"小胶质细胞诱导胶质母细胞瘤的干扰素刺激基因表达谱,并增加胶质母细胞瘤对替莫唑胺的耐药性。","authors":"Mia Dahl Sørensen, Rikke Frydendahl Sick Olsen, Mark Burton, Stephanie Kavan, Stine Asferg Petterson, Mads Thomassen, Torben Arvid Kruse, Morten Meyer, Bjarne Winther Kristensen","doi":"10.1111/nan.13016","DOIUrl":null,"url":null,"abstract":"<p><strong>Aims: </strong>Glioblastoma is the most malignant primary brain tumour. Even with standard treatment comprising surgery followed by radiation and concomitant temozolomide (TMZ) chemotherapy, glioblastoma remains incurable. Almost all patients with glioblastoma relapse owing to various intrinsic and extrinsic resistance mechanisms of the tumour cells. Glioblastomas are densely infiltrated with tumour-associated microglia and macrophages (TAMs). These immune cells affect the tumour cells in experimental studies and are associated with poor patient survival in clinical studies. The aim of the study was to investigate the impact of microglia on glioblastoma chemo-resistance.</p><p><strong>Methods: </strong>We co-cultured patient-derived glioblastoma spheroids with microglia at different TMZ concentrations and analysed cell death. In addition, we used RNA sequencing to explore differentially expressed genes after co-culture. Immunostaining was used for validation.</p><p><strong>Results: </strong>Co-culture experiments showed that microglia significantly increased TMZ resistance in glioblastoma cells. RNA sequencing revealed upregulation of a clear interferon-stimulated gene (ISG) expression signature in the glioblastoma cells after co-culture with microglia, including genes such as IFI6, IFI27, BST2, MX1 and STAT1. This ISG expression signature is linked to STAT1 signalling, which was confirmed by immunostaining. The ISG expression profile observed in glioblastoma cells with enhanced TMZ resistance corresponded to the interferon-related DNA damage resistance signature (IRDS) described in different solid cancers.</p><p><strong>Conclusions: </strong>Here, we show that the IRDS signature, linked to chemo-resistance in other cancers, can be induced in glioblastoma by microglia. ISG genes and the microglia inducing the ISG expression could be promising novel therapeutic targets in glioblastoma.</p>","PeriodicalId":19151,"journal":{"name":"Neuropathology and Applied Neurobiology","volume":"50 6","pages":"e13016"},"PeriodicalIF":4.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11618491/pdf/","citationCount":"0","resultStr":"{\"title\":\"Microglia induce an interferon-stimulated gene expression profile in glioblastoma and increase glioblastoma resistance to temozolomide.\",\"authors\":\"Mia Dahl Sørensen, Rikke Frydendahl Sick Olsen, Mark Burton, Stephanie Kavan, Stine Asferg Petterson, Mads Thomassen, Torben Arvid Kruse, Morten Meyer, Bjarne Winther Kristensen\",\"doi\":\"10.1111/nan.13016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Aims: </strong>Glioblastoma is the most malignant primary brain tumour. Even with standard treatment comprising surgery followed by radiation and concomitant temozolomide (TMZ) chemotherapy, glioblastoma remains incurable. Almost all patients with glioblastoma relapse owing to various intrinsic and extrinsic resistance mechanisms of the tumour cells. Glioblastomas are densely infiltrated with tumour-associated microglia and macrophages (TAMs). These immune cells affect the tumour cells in experimental studies and are associated with poor patient survival in clinical studies. The aim of the study was to investigate the impact of microglia on glioblastoma chemo-resistance.</p><p><strong>Methods: </strong>We co-cultured patient-derived glioblastoma spheroids with microglia at different TMZ concentrations and analysed cell death. In addition, we used RNA sequencing to explore differentially expressed genes after co-culture. Immunostaining was used for validation.</p><p><strong>Results: </strong>Co-culture experiments showed that microglia significantly increased TMZ resistance in glioblastoma cells. RNA sequencing revealed upregulation of a clear interferon-stimulated gene (ISG) expression signature in the glioblastoma cells after co-culture with microglia, including genes such as IFI6, IFI27, BST2, MX1 and STAT1. This ISG expression signature is linked to STAT1 signalling, which was confirmed by immunostaining. The ISG expression profile observed in glioblastoma cells with enhanced TMZ resistance corresponded to the interferon-related DNA damage resistance signature (IRDS) described in different solid cancers.</p><p><strong>Conclusions: </strong>Here, we show that the IRDS signature, linked to chemo-resistance in other cancers, can be induced in glioblastoma by microglia. ISG genes and the microglia inducing the ISG expression could be promising novel therapeutic targets in glioblastoma.</p>\",\"PeriodicalId\":19151,\"journal\":{\"name\":\"Neuropathology and Applied Neurobiology\",\"volume\":\"50 6\",\"pages\":\"e13016\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11618491/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuropathology and Applied Neurobiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1111/nan.13016\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuropathology and Applied Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/nan.13016","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
Microglia induce an interferon-stimulated gene expression profile in glioblastoma and increase glioblastoma resistance to temozolomide.
Aims: Glioblastoma is the most malignant primary brain tumour. Even with standard treatment comprising surgery followed by radiation and concomitant temozolomide (TMZ) chemotherapy, glioblastoma remains incurable. Almost all patients with glioblastoma relapse owing to various intrinsic and extrinsic resistance mechanisms of the tumour cells. Glioblastomas are densely infiltrated with tumour-associated microglia and macrophages (TAMs). These immune cells affect the tumour cells in experimental studies and are associated with poor patient survival in clinical studies. The aim of the study was to investigate the impact of microglia on glioblastoma chemo-resistance.
Methods: We co-cultured patient-derived glioblastoma spheroids with microglia at different TMZ concentrations and analysed cell death. In addition, we used RNA sequencing to explore differentially expressed genes after co-culture. Immunostaining was used for validation.
Results: Co-culture experiments showed that microglia significantly increased TMZ resistance in glioblastoma cells. RNA sequencing revealed upregulation of a clear interferon-stimulated gene (ISG) expression signature in the glioblastoma cells after co-culture with microglia, including genes such as IFI6, IFI27, BST2, MX1 and STAT1. This ISG expression signature is linked to STAT1 signalling, which was confirmed by immunostaining. The ISG expression profile observed in glioblastoma cells with enhanced TMZ resistance corresponded to the interferon-related DNA damage resistance signature (IRDS) described in different solid cancers.
Conclusions: Here, we show that the IRDS signature, linked to chemo-resistance in other cancers, can be induced in glioblastoma by microglia. ISG genes and the microglia inducing the ISG expression could be promising novel therapeutic targets in glioblastoma.
期刊介绍:
Neuropathology and Applied Neurobiology is an international journal for the publication of original papers, both clinical and experimental, on problems and pathological processes in neuropathology and muscle disease. Established in 1974, this reputable and well respected journal is an international journal sponsored by the British Neuropathological Society, one of the world leading societies for Neuropathology, pioneering research and scientific endeavour with a global membership base. Additionally members of the British Neuropathological Society get 50% off the cost of print colour on acceptance of their article.