Ai-Zhi Lin, Xian Fu, Qing Jiang, Xue Zhou, Sung Hee Hwang, Hou-Hua Yin, Kai-Di Ni, Qing-Jin Pan, Xin He, Ling-Tong Zhang, Yi-Wen Meng, Ya-Nan Liu, Bruce D Hammock, Jun-Yan Liu
{"title":"代谢组学揭示可溶性环氧化物水解酶是高蔗糖饮食介导的肠道屏障功能障碍的治疗靶点","authors":"Ai-Zhi Lin, Xian Fu, Qing Jiang, Xue Zhou, Sung Hee Hwang, Hou-Hua Yin, Kai-Di Ni, Qing-Jin Pan, Xin He, Ling-Tong Zhang, Yi-Wen Meng, Ya-Nan Liu, Bruce D Hammock, Jun-Yan Liu","doi":"10.1073/pnas.2409841121","DOIUrl":null,"url":null,"abstract":"<p><p>Highsucrose diet (HSD) was reported as a causative factor for multiorgan injuries. The underlying mechanisms and therapeutic strategies remain largely uncharted. In the present study, by using a metabolomics approach, we identified the soluble epoxide hydrolase (sEH) as a therapeutic target for HSD-mediated gut barrier dysfunction. Specifically, 16-week feeding on an HSD caused gut barrier dysfunction, such as colon inflammation and tight junction impairment in a murine model. A metabolomics analysis of mouse colon tissue showed a decrease in the 5(6)-epoxyeicosatrienoic acid [5(6)-EET] level and an increase in soluble epoxide hydrolase, which is related to HSD-mediated injuries to the gut barrier. The mice treated with a chemical inhibitor of sEH and the mice with genetic intervention by intestinal-specific knockout of the sEH gene significantly attenuated HSD-caused intestinal injuries by reducing HSD-mediated colon inflammation and improving the impaired tight junction caused by an HSD. Further, in vitro studies showed that treatment with 5(6)-EET, but not its hydrolytic product 5,6-dihydroxyeicosatrienoic acid (5,6-DiHET), significantly ablated high sucrose-caused intestinal epithelial inflammation and impaired tight junction. Additionally, 5(6)-EET is anti-inflammatory and improves gut epithelial tight junction while 5,6-DiHET cannot do so. This study presents an underlying mechanism of and a therapeutic strategy for the gut barrier dysfunction caused by an HSD.</p>","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":"121 48","pages":"e2409841121"},"PeriodicalIF":9.4000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Metabolomics reveals soluble epoxide hydrolase as a therapeutic target for high-sucrose diet-mediated gut barrier dysfunction.\",\"authors\":\"Ai-Zhi Lin, Xian Fu, Qing Jiang, Xue Zhou, Sung Hee Hwang, Hou-Hua Yin, Kai-Di Ni, Qing-Jin Pan, Xin He, Ling-Tong Zhang, Yi-Wen Meng, Ya-Nan Liu, Bruce D Hammock, Jun-Yan Liu\",\"doi\":\"10.1073/pnas.2409841121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Highsucrose diet (HSD) was reported as a causative factor for multiorgan injuries. The underlying mechanisms and therapeutic strategies remain largely uncharted. In the present study, by using a metabolomics approach, we identified the soluble epoxide hydrolase (sEH) as a therapeutic target for HSD-mediated gut barrier dysfunction. Specifically, 16-week feeding on an HSD caused gut barrier dysfunction, such as colon inflammation and tight junction impairment in a murine model. A metabolomics analysis of mouse colon tissue showed a decrease in the 5(6)-epoxyeicosatrienoic acid [5(6)-EET] level and an increase in soluble epoxide hydrolase, which is related to HSD-mediated injuries to the gut barrier. The mice treated with a chemical inhibitor of sEH and the mice with genetic intervention by intestinal-specific knockout of the sEH gene significantly attenuated HSD-caused intestinal injuries by reducing HSD-mediated colon inflammation and improving the impaired tight junction caused by an HSD. Further, in vitro studies showed that treatment with 5(6)-EET, but not its hydrolytic product 5,6-dihydroxyeicosatrienoic acid (5,6-DiHET), significantly ablated high sucrose-caused intestinal epithelial inflammation and impaired tight junction. Additionally, 5(6)-EET is anti-inflammatory and improves gut epithelial tight junction while 5,6-DiHET cannot do so. This study presents an underlying mechanism of and a therapeutic strategy for the gut barrier dysfunction caused by an HSD.</p>\",\"PeriodicalId\":20548,\"journal\":{\"name\":\"Proceedings of the National Academy of Sciences of the United States of America\",\"volume\":\"121 48\",\"pages\":\"e2409841121\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the National Academy of Sciences of the United States of America\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1073/pnas.2409841121\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/18 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2409841121","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/18 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Metabolomics reveals soluble epoxide hydrolase as a therapeutic target for high-sucrose diet-mediated gut barrier dysfunction.
Highsucrose diet (HSD) was reported as a causative factor for multiorgan injuries. The underlying mechanisms and therapeutic strategies remain largely uncharted. In the present study, by using a metabolomics approach, we identified the soluble epoxide hydrolase (sEH) as a therapeutic target for HSD-mediated gut barrier dysfunction. Specifically, 16-week feeding on an HSD caused gut barrier dysfunction, such as colon inflammation and tight junction impairment in a murine model. A metabolomics analysis of mouse colon tissue showed a decrease in the 5(6)-epoxyeicosatrienoic acid [5(6)-EET] level and an increase in soluble epoxide hydrolase, which is related to HSD-mediated injuries to the gut barrier. The mice treated with a chemical inhibitor of sEH and the mice with genetic intervention by intestinal-specific knockout of the sEH gene significantly attenuated HSD-caused intestinal injuries by reducing HSD-mediated colon inflammation and improving the impaired tight junction caused by an HSD. Further, in vitro studies showed that treatment with 5(6)-EET, but not its hydrolytic product 5,6-dihydroxyeicosatrienoic acid (5,6-DiHET), significantly ablated high sucrose-caused intestinal epithelial inflammation and impaired tight junction. Additionally, 5(6)-EET is anti-inflammatory and improves gut epithelial tight junction while 5,6-DiHET cannot do so. This study presents an underlying mechanism of and a therapeutic strategy for the gut barrier dysfunction caused by an HSD.
期刊介绍:
The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.