通过控制单原子 Co/TiO2 纳米结构中的氧空位优化铁磁稳定性。

IF 9.4 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Proceedings of the National Academy of Sciences of the United States of America Pub Date : 2024-11-26 Epub Date: 2024-11-18 DOI:10.1073/pnas.2409397121
Vinod K Paidi, Byoung-Hoon Lee, Alex Taekyung Lee, Sohrab Ismail-Beigi, Elizaveta Grishaeva, Sami Vasala, Pieter Glatzel, Wonjae Ko, Docheon Ahn, Taeghwan Hyeon, Younghak Kim, Kug-Seung Lee
{"title":"通过控制单原子 Co/TiO2 纳米结构中的氧空位优化铁磁稳定性。","authors":"Vinod K Paidi, Byoung-Hoon Lee, Alex Taekyung Lee, Sohrab Ismail-Beigi, Elizaveta Grishaeva, Sami Vasala, Pieter Glatzel, Wonjae Ko, Docheon Ahn, Taeghwan Hyeon, Younghak Kim, Kug-Seung Lee","doi":"10.1073/pnas.2409397121","DOIUrl":null,"url":null,"abstract":"<p><p>Oxygen vacancies and their correlation with the nanomagnetism and electronic structure are crucial for applications in dilute magnetic semiconductors design applications. Here, we report on cobalt single atom-incorporated titanium dioxide (TiO<sub>2</sub>) monodispersed nanoparticles synthesized using a thermodynamic redistribution strategy. Using advanced synchrotron-based X-ray techniques and simulations, we find trivalent titanium is absent, indicating trivalent cations do not influence ferromagnetic (FM) stability. Density functional theory calculations show that the FM stability between Co<sup>2+</sup> ions is very weak. However, electron doping from additional oxygen vacancies can significantly enhance this FM stability, which explains the observed room-temperature ferromagnetism. Moreover, our calculations illustrate enhanced FM interactions between Co<sub>Ti</sub> + V<sub>O</sub> complexes with additional oxygen vacancies. This study explores the electronic structure and room-temperature ferromagnetism using monodispersed nanocrystallites with single-atom-incorporated TiO<sub>2</sub> nanostructures. The strategies described herein offer promise in revealing magnetism in other single-atom-incorporated nanostructures.</p>","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":"121 48","pages":"e2409397121"},"PeriodicalIF":9.4000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ferromagnetic stability optimization via oxygen-vacancy control in single-atom Co/TiO<sub>2</sub> nanostructures.\",\"authors\":\"Vinod K Paidi, Byoung-Hoon Lee, Alex Taekyung Lee, Sohrab Ismail-Beigi, Elizaveta Grishaeva, Sami Vasala, Pieter Glatzel, Wonjae Ko, Docheon Ahn, Taeghwan Hyeon, Younghak Kim, Kug-Seung Lee\",\"doi\":\"10.1073/pnas.2409397121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Oxygen vacancies and their correlation with the nanomagnetism and electronic structure are crucial for applications in dilute magnetic semiconductors design applications. Here, we report on cobalt single atom-incorporated titanium dioxide (TiO<sub>2</sub>) monodispersed nanoparticles synthesized using a thermodynamic redistribution strategy. Using advanced synchrotron-based X-ray techniques and simulations, we find trivalent titanium is absent, indicating trivalent cations do not influence ferromagnetic (FM) stability. Density functional theory calculations show that the FM stability between Co<sup>2+</sup> ions is very weak. However, electron doping from additional oxygen vacancies can significantly enhance this FM stability, which explains the observed room-temperature ferromagnetism. Moreover, our calculations illustrate enhanced FM interactions between Co<sub>Ti</sub> + V<sub>O</sub> complexes with additional oxygen vacancies. This study explores the electronic structure and room-temperature ferromagnetism using monodispersed nanocrystallites with single-atom-incorporated TiO<sub>2</sub> nanostructures. The strategies described herein offer promise in revealing magnetism in other single-atom-incorporated nanostructures.</p>\",\"PeriodicalId\":20548,\"journal\":{\"name\":\"Proceedings of the National Academy of Sciences of the United States of America\",\"volume\":\"121 48\",\"pages\":\"e2409397121\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the National Academy of Sciences of the United States of America\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1073/pnas.2409397121\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/18 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2409397121","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/18 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

氧空位及其与纳米磁性和电子结构的相关性对于稀磁半导体设计应用至关重要。在此,我们报告了利用热力学再分布策略合成的钴单原子掺杂二氧化钛(TiO2)单分散纳米粒子。利用先进的同步辐射 X 射线技术和模拟,我们发现三价钛不存在,这表明三价阳离子不会影响铁磁性(FM)的稳定性。密度泛函理论计算表明,Co2+ 离子之间的铁磁稳定性非常弱。然而,额外氧空位的电子掺杂可显著增强这种铁磁稳定性,这也是观察到室温铁磁性的原因。此外,我们的计算还表明,额外的氧空位增强了 CoTi + VO 复合物之间的调频相互作用。本研究利用单原子并入 TiO2 纳米结构的单分散纳米晶探索了电子结构和室温铁磁性。本文所述的策略有望揭示其他单原子并入纳米结构的磁性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ferromagnetic stability optimization via oxygen-vacancy control in single-atom Co/TiO2 nanostructures.

Oxygen vacancies and their correlation with the nanomagnetism and electronic structure are crucial for applications in dilute magnetic semiconductors design applications. Here, we report on cobalt single atom-incorporated titanium dioxide (TiO2) monodispersed nanoparticles synthesized using a thermodynamic redistribution strategy. Using advanced synchrotron-based X-ray techniques and simulations, we find trivalent titanium is absent, indicating trivalent cations do not influence ferromagnetic (FM) stability. Density functional theory calculations show that the FM stability between Co2+ ions is very weak. However, electron doping from additional oxygen vacancies can significantly enhance this FM stability, which explains the observed room-temperature ferromagnetism. Moreover, our calculations illustrate enhanced FM interactions between CoTi + VO complexes with additional oxygen vacancies. This study explores the electronic structure and room-temperature ferromagnetism using monodispersed nanocrystallites with single-atom-incorporated TiO2 nanostructures. The strategies described herein offer promise in revealing magnetism in other single-atom-incorporated nanostructures.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
19.00
自引率
0.90%
发文量
3575
审稿时长
2.5 months
期刊介绍: The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.
期刊最新文献
Mutation-based mechanism and evolution of the potent multidrug efflux pump RE-CmeABC in Campylobacter. Using computational modeling to validate the onset of productive determiner-noun combinations in English-learning children. Correction for Ravanfar et al., Tryptophan extends the life of cytochrome P450. Global trends in antibiotic consumption during 2016-2023 and future projections through 2030. Magnetic soft microrobots for erectile dysfunction therapy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1