具有橡胶般伸缩性的纤维素离子凝胶,可用于低级热量收集。

IF 11 1区 综合性期刊 Q1 Multidisciplinary Research Pub Date : 2024-11-18 eCollection Date: 2024-01-01 DOI:10.34133/research.0533
Qian Long, Geyuan Jiang, Jianfei Zhou, Dawei Zhao, Haipeng Yu
{"title":"具有橡胶般伸缩性的纤维素离子凝胶,可用于低级热量收集。","authors":"Qian Long, Geyuan Jiang, Jianfei Zhou, Dawei Zhao, Haipeng Yu","doi":"10.34133/research.0533","DOIUrl":null,"url":null,"abstract":"<p><p>Achieving rubber-like stretchability in cellulose ionogels presents a substantial challenge due to the intrinsically extended chain configuration of cellulose. Inspired by the molecular configuration of natural rubber, we address this challenge by using cyanoethyl as a substitute for 1.5 hydroxyl on the D-glucose unit of cellulose. This strategy innovatively triggers the transformation of cellulose molecules into a coiled chain configuration, facilitating the creation of an ultra-stretchable ionogel free from any petrochemical polymers. The resultant ionogel demonstrates mechanical ductility comparable to that of a rubber band, achieving an elongation strain of nearly 1,000% while maintaining a tensile strength of up to 1.8 MPa and exhibiting a biomodulus akin to that of human skin, recorded at 63 kPa. Additionally, this stretchable ionogel presents skin-like self-healing behavior, favorable biocompatibility, and noteworthy thermoelectric properties, highlighted by a Seebeck coefficient of approximately 68 mV K<sup>-1</sup>. This study delineates a feasible molecular approach for developing stretchable ionogels from biomass resources, potentially revolutionizing self-powered stretchable electronics for integration with human tissues and skin.</p>","PeriodicalId":21120,"journal":{"name":"Research","volume":"7 ","pages":"0533"},"PeriodicalIF":11.0000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11570788/pdf/","citationCount":"0","resultStr":"{\"title\":\"A Cellulose Ionogel with Rubber-Like Stretchability for Low-Grade Heat Harvesting.\",\"authors\":\"Qian Long, Geyuan Jiang, Jianfei Zhou, Dawei Zhao, Haipeng Yu\",\"doi\":\"10.34133/research.0533\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Achieving rubber-like stretchability in cellulose ionogels presents a substantial challenge due to the intrinsically extended chain configuration of cellulose. Inspired by the molecular configuration of natural rubber, we address this challenge by using cyanoethyl as a substitute for 1.5 hydroxyl on the D-glucose unit of cellulose. This strategy innovatively triggers the transformation of cellulose molecules into a coiled chain configuration, facilitating the creation of an ultra-stretchable ionogel free from any petrochemical polymers. The resultant ionogel demonstrates mechanical ductility comparable to that of a rubber band, achieving an elongation strain of nearly 1,000% while maintaining a tensile strength of up to 1.8 MPa and exhibiting a biomodulus akin to that of human skin, recorded at 63 kPa. Additionally, this stretchable ionogel presents skin-like self-healing behavior, favorable biocompatibility, and noteworthy thermoelectric properties, highlighted by a Seebeck coefficient of approximately 68 mV K<sup>-1</sup>. This study delineates a feasible molecular approach for developing stretchable ionogels from biomass resources, potentially revolutionizing self-powered stretchable electronics for integration with human tissues and skin.</p>\",\"PeriodicalId\":21120,\"journal\":{\"name\":\"Research\",\"volume\":\"7 \",\"pages\":\"0533\"},\"PeriodicalIF\":11.0000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11570788/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.34133/research.0533\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"Multidisciplinary\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.34133/research.0533","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0

摘要

由于纤维素固有的延长链构型,要在纤维素离子凝胶中实现类似橡胶的拉伸性是一项巨大的挑战。受天然橡胶分子构型的启发,我们使用氰乙基来替代纤维素 D-葡萄糖单元上的 1.5 个羟基,从而解决了这一难题。这一策略创新性地引发了纤维素分子向卷曲链构型的转变,促进了不含任何石化聚合物的超拉伸离子凝胶的产生。由此产生的离子凝胶显示出与橡皮筋相当的机械延展性,伸长应变接近 1000%,同时保持高达 1.8 兆帕的拉伸强度,并在 63 千帕的压力下显示出与人体皮肤类似的生物模量。此外,这种可拉伸离子凝胶还具有类似皮肤的自愈合行为、良好的生物相容性和显著的热电特性,其塞贝克系数约为 68 mV K-1。这项研究为从生物质资源中开发可拉伸离子凝胶提供了一种可行的分子方法,有可能彻底改变与人体组织和皮肤集成的自供电可拉伸电子器件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Cellulose Ionogel with Rubber-Like Stretchability for Low-Grade Heat Harvesting.

Achieving rubber-like stretchability in cellulose ionogels presents a substantial challenge due to the intrinsically extended chain configuration of cellulose. Inspired by the molecular configuration of natural rubber, we address this challenge by using cyanoethyl as a substitute for 1.5 hydroxyl on the D-glucose unit of cellulose. This strategy innovatively triggers the transformation of cellulose molecules into a coiled chain configuration, facilitating the creation of an ultra-stretchable ionogel free from any petrochemical polymers. The resultant ionogel demonstrates mechanical ductility comparable to that of a rubber band, achieving an elongation strain of nearly 1,000% while maintaining a tensile strength of up to 1.8 MPa and exhibiting a biomodulus akin to that of human skin, recorded at 63 kPa. Additionally, this stretchable ionogel presents skin-like self-healing behavior, favorable biocompatibility, and noteworthy thermoelectric properties, highlighted by a Seebeck coefficient of approximately 68 mV K-1. This study delineates a feasible molecular approach for developing stretchable ionogels from biomass resources, potentially revolutionizing self-powered stretchable electronics for integration with human tissues and skin.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Research
Research Multidisciplinary-Multidisciplinary
CiteScore
13.40
自引率
3.60%
发文量
0
审稿时长
14 weeks
期刊介绍: Research serves as a global platform for academic exchange, collaboration, and technological advancements. This journal welcomes high-quality research contributions from any domain, with open arms to authors from around the globe. Comprising fundamental research in the life and physical sciences, Research also highlights significant findings and issues in engineering and applied science. The journal proudly features original research articles, reviews, perspectives, and editorials, fostering a diverse and dynamic scholarly environment.
期刊最新文献
A Cellulose Ionogel with Rubber-Like Stretchability for Low-Grade Heat Harvesting. Single Phototrophic Bacterium-Mediated Iron Cycling in Aquatic Environments. The Inhibition of Interfacial Ice Formation and Stress Accumulation with Zwitterionic Betaine and Trehalose for High-Efficiency Skin Cryopreservation. Unveiling the Power of Gut Microbiome in Predicting Neoadjuvant Immunochemotherapy Responses in Esophageal Squamous Cell Carcinoma. A Flexible, Large-Scale Sensing Array with Low-Power In-Sensor Intelligence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1