M2ara:在全细胞 MALDI 质谱生物测定中揭示代谢组药物反应。

Thomas Enzlein, Alexander Geisel, Carsten Hopf, Stefan Schmidt
{"title":"M2ara:在全细胞 MALDI 质谱生物测定中揭示代谢组药物反应。","authors":"Thomas Enzlein, Alexander Geisel, Carsten Hopf, Stefan Schmidt","doi":"10.1093/bioinformatics/btae694","DOIUrl":null,"url":null,"abstract":"<p><strong>Summary: </strong>Fast computational evaluation and classification of concentration responses for hundreds of metabolites represented by their mass-to-charge (m/z) ratios is indispensable for unraveling complex metabolomic drug actions in label-free, whole-cell Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI MS) bioassays. In particular, the identification of novel pharmacodynamic biomarkers to determine target engagement, potency and potential polypharmacology of drug-like compounds in high-throughput applications requires robust data interpretation pipelines. Given the large number of mass features in cell-based MALDI MS bioassays, reliable identification of true biological response patterns and their differentiation from any measurement artefacts that may be present is critical. To facilitate the exploration of metabolomic responses in complex MALDI MS datasets, we present a novel software tool, M2ara. Implemented as a user-friendly R-based shiny application, it enables rapid evaluation of Molecular High Content Screening (MHCS) assay data. Furthermore, we introduce the concept of Curve Response Score (CRS) and CRS fingerprints to enable rapid visual inspection and ranking of mass features. In addition, these CRS fingerprints allow direct comparison of cellular effects among different compounds. Beyond cellular assays, our computational framework can also be applied to MALDI MS-based (cell-free) biochemical assays in general.</p><p><strong>Availability and implementation: </strong>The software tool, code and examples are available at https://github.com/CeMOS-Mannheim/M2ara and https://dx.doi.org/10.6084/m9.figshare.25736541.</p><p><strong>Supplementary information: </strong>Supplementary material is available at Bioinformatics online.</p>","PeriodicalId":93899,"journal":{"name":"Bioinformatics (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"M2ara: unraveling metabolomic drug responses in whole-cell MALDI mass spectrometry bioassays.\",\"authors\":\"Thomas Enzlein, Alexander Geisel, Carsten Hopf, Stefan Schmidt\",\"doi\":\"10.1093/bioinformatics/btae694\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Summary: </strong>Fast computational evaluation and classification of concentration responses for hundreds of metabolites represented by their mass-to-charge (m/z) ratios is indispensable for unraveling complex metabolomic drug actions in label-free, whole-cell Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI MS) bioassays. In particular, the identification of novel pharmacodynamic biomarkers to determine target engagement, potency and potential polypharmacology of drug-like compounds in high-throughput applications requires robust data interpretation pipelines. Given the large number of mass features in cell-based MALDI MS bioassays, reliable identification of true biological response patterns and their differentiation from any measurement artefacts that may be present is critical. To facilitate the exploration of metabolomic responses in complex MALDI MS datasets, we present a novel software tool, M2ara. Implemented as a user-friendly R-based shiny application, it enables rapid evaluation of Molecular High Content Screening (MHCS) assay data. Furthermore, we introduce the concept of Curve Response Score (CRS) and CRS fingerprints to enable rapid visual inspection and ranking of mass features. In addition, these CRS fingerprints allow direct comparison of cellular effects among different compounds. Beyond cellular assays, our computational framework can also be applied to MALDI MS-based (cell-free) biochemical assays in general.</p><p><strong>Availability and implementation: </strong>The software tool, code and examples are available at https://github.com/CeMOS-Mannheim/M2ara and https://dx.doi.org/10.6084/m9.figshare.25736541.</p><p><strong>Supplementary information: </strong>Supplementary material is available at Bioinformatics online.</p>\",\"PeriodicalId\":93899,\"journal\":{\"name\":\"Bioinformatics (Oxford, England)\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioinformatics (Oxford, England)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/bioinformatics/btae694\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioinformatics/btae694","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要在无标记、全细胞基质辅助激光解吸/电离质谱(MALDI MS)生物测定中,要揭示复杂的代谢组学药物作用,就必须对以质量电荷比(m/z)表示的数百种代谢物的浓度反应进行快速计算评估和分类。特别是,在高通量应用中鉴定新型药效学生物标志物以确定药物类似化合物的靶点参与、药效和潜在的多药理作用需要强大的数据解读管道。鉴于基于细胞的 MALDI MS 生物测定中存在大量质量特征,因此可靠地识别真正的生物反应模式并将其与可能存在的任何测量伪影区分开来至关重要。为了便于探索复杂 MALDI MS 数据集中的代谢组学反应,我们推出了一款新型软件工具 M2ara。它是一款基于 R 的闪亮应用程序,用户使用方便,能快速评估分子高内涵筛选 (MHCS) 检测数据。此外,我们还引入了曲线响应得分(CRS)和 CRS 指纹的概念,以实现质量特征的快速视觉检测和排序。此外,这些 CRS 指纹可以直接比较不同化合物对细胞的影响。除细胞检测外,我们的计算框架还可应用于基于 MALDI MS(无细胞)的一般生化检测:软件工具、代码和示例见 https://github.com/CeMOS-Mannheim/M2ara 和 https://dx.doi.org/10.6084/m9.figshare.25736541.Supplementary 信息:补充材料可在 Bioinformatics online 上查阅。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
M2ara: unraveling metabolomic drug responses in whole-cell MALDI mass spectrometry bioassays.

Summary: Fast computational evaluation and classification of concentration responses for hundreds of metabolites represented by their mass-to-charge (m/z) ratios is indispensable for unraveling complex metabolomic drug actions in label-free, whole-cell Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI MS) bioassays. In particular, the identification of novel pharmacodynamic biomarkers to determine target engagement, potency and potential polypharmacology of drug-like compounds in high-throughput applications requires robust data interpretation pipelines. Given the large number of mass features in cell-based MALDI MS bioassays, reliable identification of true biological response patterns and their differentiation from any measurement artefacts that may be present is critical. To facilitate the exploration of metabolomic responses in complex MALDI MS datasets, we present a novel software tool, M2ara. Implemented as a user-friendly R-based shiny application, it enables rapid evaluation of Molecular High Content Screening (MHCS) assay data. Furthermore, we introduce the concept of Curve Response Score (CRS) and CRS fingerprints to enable rapid visual inspection and ranking of mass features. In addition, these CRS fingerprints allow direct comparison of cellular effects among different compounds. Beyond cellular assays, our computational framework can also be applied to MALDI MS-based (cell-free) biochemical assays in general.

Availability and implementation: The software tool, code and examples are available at https://github.com/CeMOS-Mannheim/M2ara and https://dx.doi.org/10.6084/m9.figshare.25736541.

Supplementary information: Supplementary material is available at Bioinformatics online.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
RUCova: Removal of Unwanted Covariance in mass cytometry data. ViraLM: Empowering Virus Discovery through the Genome Foundation Model. CVR-BBI: An Open-Source VR Platform for Multi-User Collaborative Brain to Brain Interfaces. Expert-guided protein Language Models enable accurate and blazingly fast fitness prediction. FungiFun3: Systemic gene set enrichment analysis for fungal species.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1