Yunchong Wang, Ethan O. Nadler, Yao-Yuan Mao, Risa H. Wechsler, Tom Abel, Peter Behroozi, Marla Geha, Yasmeen Asali, Mithi A. C. de los Reyes, Erin Kado-Fong, Nitya Kallivayalil, Erik J. Tollerud, Benjamin Weiner and John F. Wu
{"title":"SAGA Survey.V. 利用更新的宇宙机器模拟银河系质量星系周围的卫星系统","authors":"Yunchong Wang, Ethan O. Nadler, Yao-Yuan Mao, Risa H. Wechsler, Tom Abel, Peter Behroozi, Marla Geha, Yasmeen Asali, Mithi A. C. de los Reyes, Erin Kado-Fong, Nitya Kallivayalil, Erik J. Tollerud, Benjamin Weiner and John F. Wu","doi":"10.3847/1538-4357/ad7f4c","DOIUrl":null,"url":null,"abstract":"Environment plays a critical role in shaping the assembly of low-mass galaxies. Here, we use the UniverseMachine (UM) galaxy–halo connection framework and Data Release 3 of the Satellites Around Galactic Analogs (SAGA) Survey to place dwarf galaxy star formation and quenching into a cosmological context. UM is a data-driven forward model that flexibly parameterizes galaxy star formation rates (SFRs) using only halo mass and assembly history. We add a new quenching model to UM, tailored for galaxies with m⋆ ≲ 109M⊙, and constrain the model down to m⋆ ≳ 107M⊙ using new SAGA observations of 101 satellite systems around Milky Way (MW)–mass hosts and a sample of isolated field galaxies in a similar mass range from the Sloan Digital Sky Survey. The new best-fit model, “UM-SAGA,” reproduces the satellite stellar mass functions, average SFRs, and quenched fractions in SAGA satellites while keeping isolated dwarfs mostly star-forming. The enhanced quenching in satellites relative to isolated field galaxies leads the model to maximally rely on halo assembly to explain the observed environmental quenching. Extrapolating the model down to m⋆ ∼ 106.5M⊙ yields a quenched fraction of ≳30% for isolated field galaxies and ≳80% for satellites of MW-mass hosts at this stellar mass. Spectroscopic surveys can soon test this specific prediction to reveal the relative importance of internal feedback, cessation of mass and gas accretion, satellite-specific gas processes, and reionization for the evolution of faint low-mass galaxies.","PeriodicalId":501813,"journal":{"name":"The Astrophysical Journal","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The SAGA Survey. V. Modeling Satellite Systems around Milky Way–Mass Galaxies with Updated UniverseMachine\",\"authors\":\"Yunchong Wang, Ethan O. Nadler, Yao-Yuan Mao, Risa H. Wechsler, Tom Abel, Peter Behroozi, Marla Geha, Yasmeen Asali, Mithi A. C. de los Reyes, Erin Kado-Fong, Nitya Kallivayalil, Erik J. Tollerud, Benjamin Weiner and John F. Wu\",\"doi\":\"10.3847/1538-4357/ad7f4c\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Environment plays a critical role in shaping the assembly of low-mass galaxies. Here, we use the UniverseMachine (UM) galaxy–halo connection framework and Data Release 3 of the Satellites Around Galactic Analogs (SAGA) Survey to place dwarf galaxy star formation and quenching into a cosmological context. UM is a data-driven forward model that flexibly parameterizes galaxy star formation rates (SFRs) using only halo mass and assembly history. We add a new quenching model to UM, tailored for galaxies with m⋆ ≲ 109M⊙, and constrain the model down to m⋆ ≳ 107M⊙ using new SAGA observations of 101 satellite systems around Milky Way (MW)–mass hosts and a sample of isolated field galaxies in a similar mass range from the Sloan Digital Sky Survey. The new best-fit model, “UM-SAGA,” reproduces the satellite stellar mass functions, average SFRs, and quenched fractions in SAGA satellites while keeping isolated dwarfs mostly star-forming. The enhanced quenching in satellites relative to isolated field galaxies leads the model to maximally rely on halo assembly to explain the observed environmental quenching. Extrapolating the model down to m⋆ ∼ 106.5M⊙ yields a quenched fraction of ≳30% for isolated field galaxies and ≳80% for satellites of MW-mass hosts at this stellar mass. Spectroscopic surveys can soon test this specific prediction to reveal the relative importance of internal feedback, cessation of mass and gas accretion, satellite-specific gas processes, and reionization for the evolution of faint low-mass galaxies.\",\"PeriodicalId\":501813,\"journal\":{\"name\":\"The Astrophysical Journal\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Astrophysical Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3847/1538-4357/ad7f4c\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astrophysical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/1538-4357/ad7f4c","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
环境在形成低质量星系的过程中起着至关重要的作用。在这里,我们利用UniverseMachine(UM)星系-光环连接框架和银河系环绕卫星巡天(SAGA)数据第3版,将矮星系的恒星形成和淬火置于宇宙学的背景中。UM是一个数据驱动的前向模型,它仅使用光环质量和装配历史就能灵活地确定星系恒星形成率(SFRs)的参数。我们在UM中添加了一个新的淬火模型,这个模型是为m⋆ ≲ 109M⊙的星系量身定做的,并利用斯隆数字巡天观测(Sloan Digital Sky Survey)对101个围绕银河系(MW)质量主星的卫星系统和质量范围相似的孤立场星系样本进行的新的SAGA观测,将模型约束到了m⋆ ≳ 107M⊙。新的最佳拟合模型 "UM-SAGA "再现了卫星恒星质量函数、平均SFR和SAGA卫星中的淬火分数,同时保持了孤立矮星的大部分恒星形成。与孤立的场星系相比,卫星星系中的淬火增强了,这导致该模型最大程度地依赖于晕的组装来解释观测到的环境淬火。将该模型向下推演到m⋆∼106.5M⊙时,孤立场星系的淬火比例为30%,而在这一恒星质量下,MW质量宿主的卫星星系的淬火比例为80%。光谱巡天很快就能检验这一具体预测,从而揭示内部反馈、质量和气体吸积的停止、卫星特有的气体过程以及再电离对暗弱低质量星系演化的相对重要性。
The SAGA Survey. V. Modeling Satellite Systems around Milky Way–Mass Galaxies with Updated UniverseMachine
Environment plays a critical role in shaping the assembly of low-mass galaxies. Here, we use the UniverseMachine (UM) galaxy–halo connection framework and Data Release 3 of the Satellites Around Galactic Analogs (SAGA) Survey to place dwarf galaxy star formation and quenching into a cosmological context. UM is a data-driven forward model that flexibly parameterizes galaxy star formation rates (SFRs) using only halo mass and assembly history. We add a new quenching model to UM, tailored for galaxies with m⋆ ≲ 109M⊙, and constrain the model down to m⋆ ≳ 107M⊙ using new SAGA observations of 101 satellite systems around Milky Way (MW)–mass hosts and a sample of isolated field galaxies in a similar mass range from the Sloan Digital Sky Survey. The new best-fit model, “UM-SAGA,” reproduces the satellite stellar mass functions, average SFRs, and quenched fractions in SAGA satellites while keeping isolated dwarfs mostly star-forming. The enhanced quenching in satellites relative to isolated field galaxies leads the model to maximally rely on halo assembly to explain the observed environmental quenching. Extrapolating the model down to m⋆ ∼ 106.5M⊙ yields a quenched fraction of ≳30% for isolated field galaxies and ≳80% for satellites of MW-mass hosts at this stellar mass. Spectroscopic surveys can soon test this specific prediction to reveal the relative importance of internal feedback, cessation of mass and gas accretion, satellite-specific gas processes, and reionization for the evolution of faint low-mass galaxies.