Yanliu Zheng, Juan Luo, Han Gao, Yi Zhou, Keqin Li
{"title":"Pri-DDQN:通过混合代理学习自适应交通信号控制策略","authors":"Yanliu Zheng, Juan Luo, Han Gao, Yi Zhou, Keqin Li","doi":"10.1007/s40747-024-01651-5","DOIUrl":null,"url":null,"abstract":"<p>Adaptive traffic signal control is the core of the intelligent transportation system (ITS), which can effectively reduce the pressure on traffic congestion and improve travel efficiency. Methods based on deep Q-leaning network (DQN) have become the mainstream to solve single-intersection traffic signal control. However, most of them neglect the important difference of samples and the dependence of traffic states, and cannot quickly respond to randomly changing traffic flows. In this paper, we propose a new single-intersection traffic signal control method (Pri-DDQN) based on reinforcement learning and model the traffic environment as a reinforcement learning environment, and the agent chooses the best action to schedule the traffic flow at the intersection based on the real-time traffic states. With the goal of minimizing the waiting time and queue length at intersections, we use double DQN to train the agent, incorporate traffic state and reward into the loss function, and update the target network parameters asynchronously, to improve the agent’s learning ability. We try to use the power function to dynamically change the exploration rate to accelerate convergence. In addition, we introduce a priority-based dynamic experience replay mechanism to increase the sampling rate of important samples. The results show that Pri-DDQN achieves better performance, compared to the best baseline, it reduces the average queue length is reduced by 13.41%, and the average waiting time by 32.33% at the intersection.</p>","PeriodicalId":10524,"journal":{"name":"Complex & Intelligent Systems","volume":"64 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pri-DDQN: learning adaptive traffic signal control strategy through a hybrid agent\",\"authors\":\"Yanliu Zheng, Juan Luo, Han Gao, Yi Zhou, Keqin Li\",\"doi\":\"10.1007/s40747-024-01651-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Adaptive traffic signal control is the core of the intelligent transportation system (ITS), which can effectively reduce the pressure on traffic congestion and improve travel efficiency. Methods based on deep Q-leaning network (DQN) have become the mainstream to solve single-intersection traffic signal control. However, most of them neglect the important difference of samples and the dependence of traffic states, and cannot quickly respond to randomly changing traffic flows. In this paper, we propose a new single-intersection traffic signal control method (Pri-DDQN) based on reinforcement learning and model the traffic environment as a reinforcement learning environment, and the agent chooses the best action to schedule the traffic flow at the intersection based on the real-time traffic states. With the goal of minimizing the waiting time and queue length at intersections, we use double DQN to train the agent, incorporate traffic state and reward into the loss function, and update the target network parameters asynchronously, to improve the agent’s learning ability. We try to use the power function to dynamically change the exploration rate to accelerate convergence. In addition, we introduce a priority-based dynamic experience replay mechanism to increase the sampling rate of important samples. The results show that Pri-DDQN achieves better performance, compared to the best baseline, it reduces the average queue length is reduced by 13.41%, and the average waiting time by 32.33% at the intersection.</p>\",\"PeriodicalId\":10524,\"journal\":{\"name\":\"Complex & Intelligent Systems\",\"volume\":\"64 1\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Complex & Intelligent Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s40747-024-01651-5\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex & Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s40747-024-01651-5","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Pri-DDQN: learning adaptive traffic signal control strategy through a hybrid agent
Adaptive traffic signal control is the core of the intelligent transportation system (ITS), which can effectively reduce the pressure on traffic congestion and improve travel efficiency. Methods based on deep Q-leaning network (DQN) have become the mainstream to solve single-intersection traffic signal control. However, most of them neglect the important difference of samples and the dependence of traffic states, and cannot quickly respond to randomly changing traffic flows. In this paper, we propose a new single-intersection traffic signal control method (Pri-DDQN) based on reinforcement learning and model the traffic environment as a reinforcement learning environment, and the agent chooses the best action to schedule the traffic flow at the intersection based on the real-time traffic states. With the goal of minimizing the waiting time and queue length at intersections, we use double DQN to train the agent, incorporate traffic state and reward into the loss function, and update the target network parameters asynchronously, to improve the agent’s learning ability. We try to use the power function to dynamically change the exploration rate to accelerate convergence. In addition, we introduce a priority-based dynamic experience replay mechanism to increase the sampling rate of important samples. The results show that Pri-DDQN achieves better performance, compared to the best baseline, it reduces the average queue length is reduced by 13.41%, and the average waiting time by 32.33% at the intersection.
期刊介绍:
Complex & Intelligent Systems aims to provide a forum for presenting and discussing novel approaches, tools and techniques meant for attaining a cross-fertilization between the broad fields of complex systems, computational simulation, and intelligent analytics and visualization. The transdisciplinary research that the journal focuses on will expand the boundaries of our understanding by investigating the principles and processes that underlie many of the most profound problems facing society today.