使用有序加权平均法进行稳健的最小最大(遗憾)优化

IF 6 2区 管理学 Q1 OPERATIONS RESEARCH & MANAGEMENT SCIENCE European Journal of Operational Research Pub Date : 2024-10-29 DOI:10.1016/j.ejor.2024.10.028
Werner Baak, Marc Goerigk, Adam Kasperski, Paweł Zieliński
{"title":"使用有序加权平均法进行稳健的最小最大(遗憾)优化","authors":"Werner Baak, Marc Goerigk, Adam Kasperski, Paweł Zieliński","doi":"10.1016/j.ejor.2024.10.028","DOIUrl":null,"url":null,"abstract":"In decision-making under uncertainty, several criteria have been studied to aggregate the performance of a solution over multiple possible scenarios. This paper introduces a novel variant of ordered weighted averaging (OWA) for optimization problems. It generalizes the classic OWA approach, which includes the robust min–max optimization as a special case, as well as the min–max regret optimization. We derive new complexity results for this setting, including insights into the inapproximability and approximability of this problem. In particular, we provide stronger positive approximation results that asymptotically improve the previously best-known bounds for the classic OWA approach.","PeriodicalId":55161,"journal":{"name":"European Journal of Operational Research","volume":"37 1","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust min-max (regret) optimization using ordered weighted averaging\",\"authors\":\"Werner Baak, Marc Goerigk, Adam Kasperski, Paweł Zieliński\",\"doi\":\"10.1016/j.ejor.2024.10.028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In decision-making under uncertainty, several criteria have been studied to aggregate the performance of a solution over multiple possible scenarios. This paper introduces a novel variant of ordered weighted averaging (OWA) for optimization problems. It generalizes the classic OWA approach, which includes the robust min–max optimization as a special case, as well as the min–max regret optimization. We derive new complexity results for this setting, including insights into the inapproximability and approximability of this problem. In particular, we provide stronger positive approximation results that asymptotically improve the previously best-known bounds for the classic OWA approach.\",\"PeriodicalId\":55161,\"journal\":{\"name\":\"European Journal of Operational Research\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Operational Research\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ejor.2024.10.028\",\"RegionNum\":2,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPERATIONS RESEARCH & MANAGEMENT SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Operational Research","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1016/j.ejor.2024.10.028","RegionNum":2,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

在不确定情况下进行决策时,人们研究了几种标准,以综合多种可能情况下解决方案的性能。本文为优化问题引入了一种新的有序加权平均法(OWA)变体。它概括了经典的 OWA 方法,其中包括作为特例的稳健最小最优化以及最小遗憾最优化。我们推导出了这一设置的新复杂性结果,包括对这一问题的不可逼近性和可逼近性的见解。特别是,我们提供了更强的正向近似结果,渐进地改进了经典 OWA 方法之前最著名的界限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Robust min-max (regret) optimization using ordered weighted averaging
In decision-making under uncertainty, several criteria have been studied to aggregate the performance of a solution over multiple possible scenarios. This paper introduces a novel variant of ordered weighted averaging (OWA) for optimization problems. It generalizes the classic OWA approach, which includes the robust min–max optimization as a special case, as well as the min–max regret optimization. We derive new complexity results for this setting, including insights into the inapproximability and approximability of this problem. In particular, we provide stronger positive approximation results that asymptotically improve the previously best-known bounds for the classic OWA approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
European Journal of Operational Research
European Journal of Operational Research 管理科学-运筹学与管理科学
CiteScore
11.90
自引率
9.40%
发文量
786
审稿时长
8.2 months
期刊介绍: The European Journal of Operational Research (EJOR) publishes high quality, original papers that contribute to the methodology of operational research (OR) and to the practice of decision making.
期刊最新文献
Editorial Board Bi-objective ranking and selection using stochastic kriging Single-machine preemptive scheduling with assignable due dates or assignable weights to minimize total weighted late work Measuring carbon emission performance in China's energy market: Evidence from improved non-radial directional distance function data envelopment analysis A general valuation framework for rough stochastic local volatility models and applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1