多项式模网格中的近乎严密的安全性--PRF、IBE、全但多LTF等

IF 1.4 2区 数学 Q3 COMPUTER SCIENCE, THEORY & METHODS Designs, Codes and Cryptography Pub Date : 2024-11-19 DOI:10.1007/s10623-024-01523-6
Zhedong Wang, Qiqi Lai, Feng-Hao Liu
{"title":"多项式模网格中的近乎严密的安全性--PRF、IBE、全但多LTF等","authors":"Zhedong Wang, Qiqi Lai, Feng-Hao Liu","doi":"10.1007/s10623-024-01523-6","DOIUrl":null,"url":null,"abstract":"<p>Achieving tight security is a fundamental task in cryptography. While one of the most important purposes of this task is to improve the overall efficiency of a construction (by allowing smaller security parameters), many current lattice-based instantiations do not completely achieve the goal. Particularly, a super-polynomial modulus seems to be necessary in all prior work for (almost) tight schemes that allow the adversary to conduct queries, such as PRF, IBE, and Signatures. As the super-polynomial modulus would affect the noise-to-modulus ratio and thus increase the parameters, this might cancel out the advantages (in efficiency) brought from the tighter analysis. To determine the full power of tight security/analysis in lattices, it is necessary to determine whether the super-polynomial modulus restriction is inherent. In this work, we remove the super-polynomial modulus restriction for many important primitives—PRF, IBE, all-but-many Lossy Trapdoor Functions, and Signatures. The crux relies on an improvement over the framework of Boyen and Li (Asiacrypt 16), and an almost tight reduction from LWE to LWR, which improves prior work by Alwen et al. (Eurocrypt 13), Bogdanov et al. (TCC 16), and Bai et al. (Asiacrypt 15). By combining these two advances, we are able to derive these almost tight schemes under LWE with a polynomial modulus.</p>","PeriodicalId":11130,"journal":{"name":"Designs, Codes and Cryptography","volume":"10 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Almost tight security in lattices with polynomial moduli—PRF, IBE, all-but-many LTF, and more\",\"authors\":\"Zhedong Wang, Qiqi Lai, Feng-Hao Liu\",\"doi\":\"10.1007/s10623-024-01523-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Achieving tight security is a fundamental task in cryptography. While one of the most important purposes of this task is to improve the overall efficiency of a construction (by allowing smaller security parameters), many current lattice-based instantiations do not completely achieve the goal. Particularly, a super-polynomial modulus seems to be necessary in all prior work for (almost) tight schemes that allow the adversary to conduct queries, such as PRF, IBE, and Signatures. As the super-polynomial modulus would affect the noise-to-modulus ratio and thus increase the parameters, this might cancel out the advantages (in efficiency) brought from the tighter analysis. To determine the full power of tight security/analysis in lattices, it is necessary to determine whether the super-polynomial modulus restriction is inherent. In this work, we remove the super-polynomial modulus restriction for many important primitives—PRF, IBE, all-but-many Lossy Trapdoor Functions, and Signatures. The crux relies on an improvement over the framework of Boyen and Li (Asiacrypt 16), and an almost tight reduction from LWE to LWR, which improves prior work by Alwen et al. (Eurocrypt 13), Bogdanov et al. (TCC 16), and Bai et al. (Asiacrypt 15). By combining these two advances, we are able to derive these almost tight schemes under LWE with a polynomial modulus.</p>\",\"PeriodicalId\":11130,\"journal\":{\"name\":\"Designs, Codes and Cryptography\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Designs, Codes and Cryptography\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10623-024-01523-6\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Designs, Codes and Cryptography","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10623-024-01523-6","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

实现严密的安全性是密码学的一项基本任务。虽然这项任务最重要的目的之一是提高结构的整体效率(通过允许更小的安全参数),但目前许多基于网格的实例并不能完全实现这一目标。特别是,对于允许对手进行查询的(几乎)严密方案(如 PRF、IBE 和签名)来说,超多项式模似乎在所有先前的工作中都是必要的。由于超多项式模数会影响噪声-模数比,从而增加参数,这可能会抵消严密性分析带来的优势(在效率方面)。要确定网格中严密安全/分析的全部威力,就必须确定超多项式模数限制是否是固有的。在这项工作中,我们消除了许多重要基元--PRF、IBE、全但多有损陷阱门函数和签名--的超多项式模限制。关键在于对 Boyen 和 Li(Asiacrypt 16)框架的改进,以及从 LWE 到 LWR 的几乎紧密的简化,这改进了 Alwen 等人(Eurocrypt 13)、Bogdanov 等人(TCC 16)和 Bai 等人(Asiacrypt 15)之前的工作。结合这两项进展,我们就能在多项式模的 LWE 下推导出这些几乎严密的方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Almost tight security in lattices with polynomial moduli—PRF, IBE, all-but-many LTF, and more

Achieving tight security is a fundamental task in cryptography. While one of the most important purposes of this task is to improve the overall efficiency of a construction (by allowing smaller security parameters), many current lattice-based instantiations do not completely achieve the goal. Particularly, a super-polynomial modulus seems to be necessary in all prior work for (almost) tight schemes that allow the adversary to conduct queries, such as PRF, IBE, and Signatures. As the super-polynomial modulus would affect the noise-to-modulus ratio and thus increase the parameters, this might cancel out the advantages (in efficiency) brought from the tighter analysis. To determine the full power of tight security/analysis in lattices, it is necessary to determine whether the super-polynomial modulus restriction is inherent. In this work, we remove the super-polynomial modulus restriction for many important primitives—PRF, IBE, all-but-many Lossy Trapdoor Functions, and Signatures. The crux relies on an improvement over the framework of Boyen and Li (Asiacrypt 16), and an almost tight reduction from LWE to LWR, which improves prior work by Alwen et al. (Eurocrypt 13), Bogdanov et al. (TCC 16), and Bai et al. (Asiacrypt 15). By combining these two advances, we are able to derive these almost tight schemes under LWE with a polynomial modulus.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Designs, Codes and Cryptography
Designs, Codes and Cryptography 工程技术-计算机:理论方法
CiteScore
2.80
自引率
12.50%
发文量
157
审稿时长
16.5 months
期刊介绍: Designs, Codes and Cryptography is an archival peer-reviewed technical journal publishing original research papers in the designated areas. There is a great deal of activity in design theory, coding theory and cryptography, including a substantial amount of research which brings together more than one of the subjects. While many journals exist for each of the individual areas, few encourage the interaction of the disciplines. The journal was founded to meet the needs of mathematicians, engineers and computer scientists working in these areas, whose interests extend beyond the bounds of any one of the individual disciplines. The journal provides a forum for high quality research in its three areas, with papers touching more than one of the areas especially welcome. The journal also considers high quality submissions in the closely related areas of finite fields and finite geometries, which provide important tools for both the construction and the actual application of designs, codes and cryptographic systems. In particular, it includes (mostly theoretical) papers on computational aspects of finite fields. It also considers topics in sequence design, which frequently admit equivalent formulations in the journal’s main areas. Designs, Codes and Cryptography is mathematically oriented, emphasizing the algebraic and geometric aspects of the areas it covers. The journal considers high quality papers of both a theoretical and a practical nature, provided they contain a substantial amount of mathematics.
期刊最新文献
Quantum rectangle attack and its application on Deoxys-BC Almost tight security in lattices with polynomial moduli—PRF, IBE, all-but-many LTF, and more Breaking the power-of-two barrier: noise estimation for BGV in NTT-friendly rings A new method of constructing $$(k+s)$$ -variable bent functions based on a family of s-plateaued functions on k variables Further investigation on differential properties of the generalized Ness–Helleseth function
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1