{"title":"EMF1 在拟南芥中发挥三维染色质调节器的功能","authors":"Jiayue Shu, Linhua Sun, Dingyue Wang, Xiaochang Yin, Minqi Yang, Zhijia Yang, Zheng Gao, Yuehui He, Myriam Calonje, Jinsheng Lai, Xing Wang Deng, Hang He, Yue Zhou","doi":"10.1016/j.molcel.2024.10.031","DOIUrl":null,"url":null,"abstract":"It is well known that genome organizers, like mammalian CCCTC-binding factor (CTCF) or Drosophila architectural proteins CP190 and BEAF-32, contribute to the three-dimensional (3D) organization of the genome and ensure normal gene transcription. However, <em>bona fide</em> genome organizers have not been identified in plants. Here, we show that EMBRYONIC FLOWER1 (EMF1) functions as a genome modulator in Arabidopsis. EMF1 interacts with the cohesin component SISTER CHROMATIN COHESION3 (SCC3), and both proteins are enriched at compartment domain (CD) boundaries. Accordingly, <em>emf1</em> and <em>scc3</em> show a strength decrease at the CD boundary in which these proteins colocalize. EMF1 maintains CD boundary strength, either independently or in cooperation with histone modifications. Moreover, EMF1 is required to maintain gene-resolution interactions and to block long-range aberrant chromatin loops. These data unveil a key role of EMF1 in regulating 3D chromatin structure.","PeriodicalId":18950,"journal":{"name":"Molecular Cell","volume":"76 1","pages":""},"PeriodicalIF":14.5000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"EMF1 functions as a 3D chromatin modulator in Arabidopsis\",\"authors\":\"Jiayue Shu, Linhua Sun, Dingyue Wang, Xiaochang Yin, Minqi Yang, Zhijia Yang, Zheng Gao, Yuehui He, Myriam Calonje, Jinsheng Lai, Xing Wang Deng, Hang He, Yue Zhou\",\"doi\":\"10.1016/j.molcel.2024.10.031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is well known that genome organizers, like mammalian CCCTC-binding factor (CTCF) or Drosophila architectural proteins CP190 and BEAF-32, contribute to the three-dimensional (3D) organization of the genome and ensure normal gene transcription. However, <em>bona fide</em> genome organizers have not been identified in plants. Here, we show that EMBRYONIC FLOWER1 (EMF1) functions as a genome modulator in Arabidopsis. EMF1 interacts with the cohesin component SISTER CHROMATIN COHESION3 (SCC3), and both proteins are enriched at compartment domain (CD) boundaries. Accordingly, <em>emf1</em> and <em>scc3</em> show a strength decrease at the CD boundary in which these proteins colocalize. EMF1 maintains CD boundary strength, either independently or in cooperation with histone modifications. Moreover, EMF1 is required to maintain gene-resolution interactions and to block long-range aberrant chromatin loops. These data unveil a key role of EMF1 in regulating 3D chromatin structure.\",\"PeriodicalId\":18950,\"journal\":{\"name\":\"Molecular Cell\",\"volume\":\"76 1\",\"pages\":\"\"},\"PeriodicalIF\":14.5000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Cell\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.molcel.2024.10.031\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.molcel.2024.10.031","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
众所周知,基因组组织者,如哺乳动物的 CCCTC 结合因子(CTCF)或果蝇的结构蛋白 CP190 和 BEAF-32,有助于基因组的三维(3D)组织,并确保基因的正常转录。然而,在植物中尚未发现真正的基因组组织者。在这里,我们发现 EMBRYONIC FLOWER1(EMF1)在拟南芥中具有基因组调节器的功能。EMF1 与凝聚素成分 SISTER CHROMATIN COHESION3(SCC3)相互作用,这两种蛋白都富集在区室结构域(CD)边界。因此,emf1 和 scc3 在这些蛋白共定位的 CD 边界处显示出强度下降。EMF1 可独立或与组蛋白修饰共同维持 CD 边界强度。此外,EMF1还是维持基因分辨率相互作用和阻断长程异常染色质环路的必要条件。这些数据揭示了EMF1在调节三维染色质结构中的关键作用。
EMF1 functions as a 3D chromatin modulator in Arabidopsis
It is well known that genome organizers, like mammalian CCCTC-binding factor (CTCF) or Drosophila architectural proteins CP190 and BEAF-32, contribute to the three-dimensional (3D) organization of the genome and ensure normal gene transcription. However, bona fide genome organizers have not been identified in plants. Here, we show that EMBRYONIC FLOWER1 (EMF1) functions as a genome modulator in Arabidopsis. EMF1 interacts with the cohesin component SISTER CHROMATIN COHESION3 (SCC3), and both proteins are enriched at compartment domain (CD) boundaries. Accordingly, emf1 and scc3 show a strength decrease at the CD boundary in which these proteins colocalize. EMF1 maintains CD boundary strength, either independently or in cooperation with histone modifications. Moreover, EMF1 is required to maintain gene-resolution interactions and to block long-range aberrant chromatin loops. These data unveil a key role of EMF1 in regulating 3D chromatin structure.
期刊介绍:
Molecular Cell is a companion to Cell, the leading journal of biology and the highest-impact journal in the world. Launched in December 1997 and published monthly. Molecular Cell is dedicated to publishing cutting-edge research in molecular biology, focusing on fundamental cellular processes. The journal encompasses a wide range of topics, including DNA replication, recombination, and repair; Chromatin biology and genome organization; Transcription; RNA processing and decay; Non-coding RNA function; Translation; Protein folding, modification, and quality control; Signal transduction pathways; Cell cycle and checkpoints; Cell death; Autophagy; Metabolism.