单宁酸盐改性 CoFe 层状双氢氧化物可在工业级电流密度下促进海水稳定氧化

IF 6.1 1区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR Inorganic Chemistry Frontiers Pub Date : 2024-11-18 DOI:10.1039/d4qi02404d
Zhengwei Cai, Yaxin Guo, Chaoxin Yang, Zixiao Li, Shengjun Sun, Yue Meng, Xiaoyan Wang, Min Zhang, Hefeng Wang, Yongchao Yao, Dongdong Zheng, Asmaa Farouk, Fatma A. Ibrahim, Yanqin Lv, Xuping Sun, Bo Tang
{"title":"单宁酸盐改性 CoFe 层状双氢氧化物可在工业级电流密度下促进海水稳定氧化","authors":"Zhengwei Cai, Yaxin Guo, Chaoxin Yang, Zixiao Li, Shengjun Sun, Yue Meng, Xiaoyan Wang, Min Zhang, Hefeng Wang, Yongchao Yao, Dongdong Zheng, Asmaa Farouk, Fatma A. Ibrahim, Yanqin Lv, Xuping Sun, Bo Tang","doi":"10.1039/d4qi02404d","DOIUrl":null,"url":null,"abstract":"Seawater electrolysis for green hydrogen production is a promising approach toward achieving carbon neutrality. However, the abundance of Cl– in seawater can severely corrode catalytic sites, significantly reducing the lifespan of seawater electrolysis systems. Herein, we present metal ions-chelated tannic acid nanoparticles anchored on the CoFe layered double hydroxide nanosheet array on nickel foam (CoFe LDH@CoFe-TA/NF), synthesized via an interfacial coordination assembly method, serving as an efficient and stable electrocatalyst for alkaline seawater oxidation (ASO). The formed CoFe-TA nanoparticles promote the reconstruction and generation of CoFe oxy(hydroxide), which not only drives excellent ASO performance but also enhances resistance to chlorine-induced corrosion. In addition, the CoFe-TA ligand network effectively inhibits metal ions leaching and stabilizes active sites. As a result, CoFe LDH@CoFe-TA/NF electrode requires a low overpotential of only 379 mV to obtain a current density of 1000 mA cm–2 in 1 M KOH + seawater. Furthermore, the electrode also shows a stable operation for 450 h at an industrial-level current density, underscoring its potential for sustainable energy applications.","PeriodicalId":79,"journal":{"name":"Inorganic Chemistry Frontiers","volume":"30 1","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tannic acid salts-modified CoFe-layered double hydroxide boosts the stable seawater oxidation at an industrial-level current density\",\"authors\":\"Zhengwei Cai, Yaxin Guo, Chaoxin Yang, Zixiao Li, Shengjun Sun, Yue Meng, Xiaoyan Wang, Min Zhang, Hefeng Wang, Yongchao Yao, Dongdong Zheng, Asmaa Farouk, Fatma A. Ibrahim, Yanqin Lv, Xuping Sun, Bo Tang\",\"doi\":\"10.1039/d4qi02404d\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Seawater electrolysis for green hydrogen production is a promising approach toward achieving carbon neutrality. However, the abundance of Cl– in seawater can severely corrode catalytic sites, significantly reducing the lifespan of seawater electrolysis systems. Herein, we present metal ions-chelated tannic acid nanoparticles anchored on the CoFe layered double hydroxide nanosheet array on nickel foam (CoFe LDH@CoFe-TA/NF), synthesized via an interfacial coordination assembly method, serving as an efficient and stable electrocatalyst for alkaline seawater oxidation (ASO). The formed CoFe-TA nanoparticles promote the reconstruction and generation of CoFe oxy(hydroxide), which not only drives excellent ASO performance but also enhances resistance to chlorine-induced corrosion. In addition, the CoFe-TA ligand network effectively inhibits metal ions leaching and stabilizes active sites. As a result, CoFe LDH@CoFe-TA/NF electrode requires a low overpotential of only 379 mV to obtain a current density of 1000 mA cm–2 in 1 M KOH + seawater. Furthermore, the electrode also shows a stable operation for 450 h at an industrial-level current density, underscoring its potential for sustainable energy applications.\",\"PeriodicalId\":79,\"journal\":{\"name\":\"Inorganic Chemistry Frontiers\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inorganic Chemistry Frontiers\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1039/d4qi02404d\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Chemistry Frontiers","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4qi02404d","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

摘要

海水电解绿色制氢是实现碳中和的一种可行方法。然而,海水中大量的 Cl- 会严重腐蚀催化位点,从而大大缩短海水电解系统的使用寿命。在此,我们介绍了通过界面配位组装法合成的锚定在泡沫镍上的 CoFe 层状双氢氧化物纳米片阵列上的金属离子螯合单宁酸纳米颗粒(CoFe LDH@CoFe-TA/NF),作为一种高效稳定的碱性海水氧化(ASO)电催化剂。所形成的 CoFe-TA 纳米粒子促进了 CoFe 氧(氢氧化物)的重构和生成,这不仅推动了优异的 ASO 性能,还增强了抗氯引起的腐蚀的能力。此外,CoFe-TA 配体网络还能有效抑制金属离子的浸出并稳定活性位点。因此,CoFe LDH@CoFe-TA/NF 电极只需要 379 mV 的低过电位,就能在 1 M KOH + 海水中获得 1000 mA cm-2 的电流密度。此外,该电极还能在工业水平的电流密度下稳定运行 450 小时,突出了其在可持续能源应用方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Tannic acid salts-modified CoFe-layered double hydroxide boosts the stable seawater oxidation at an industrial-level current density
Seawater electrolysis for green hydrogen production is a promising approach toward achieving carbon neutrality. However, the abundance of Cl– in seawater can severely corrode catalytic sites, significantly reducing the lifespan of seawater electrolysis systems. Herein, we present metal ions-chelated tannic acid nanoparticles anchored on the CoFe layered double hydroxide nanosheet array on nickel foam (CoFe LDH@CoFe-TA/NF), synthesized via an interfacial coordination assembly method, serving as an efficient and stable electrocatalyst for alkaline seawater oxidation (ASO). The formed CoFe-TA nanoparticles promote the reconstruction and generation of CoFe oxy(hydroxide), which not only drives excellent ASO performance but also enhances resistance to chlorine-induced corrosion. In addition, the CoFe-TA ligand network effectively inhibits metal ions leaching and stabilizes active sites. As a result, CoFe LDH@CoFe-TA/NF electrode requires a low overpotential of only 379 mV to obtain a current density of 1000 mA cm–2 in 1 M KOH + seawater. Furthermore, the electrode also shows a stable operation for 450 h at an industrial-level current density, underscoring its potential for sustainable energy applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Inorganic Chemistry Frontiers
Inorganic Chemistry Frontiers CHEMISTRY, INORGANIC & NUCLEAR-
CiteScore
10.40
自引率
7.10%
发文量
587
审稿时长
1.2 months
期刊介绍: The international, high quality journal for interdisciplinary research between inorganic chemistry and related subjects
期刊最新文献
Integrating Multiple Emission Centers for Photoluminescence Regulation in Copper-Antimony/Bismuth Halides Enhancing White Light-Emitting Diode Performance with Ultra-Wide Spectrum ZnS:Mn-CDs@SiO2 Dual Core@Shell Composite Correction: Coordination tuning of Ni/Fe complex-based electrocatalysts for enhanced oxygen evolution Rapid room-temperature H2S detection based on Bi2S3/CuO heterostructures: the synergy of increased surface-adsorbed oxygen and heterojunction effect Critical assessment of exsolution process in Cu-doped SrTiO3 by a combined spectroscopic approach.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1