Pablo Botella*, Josu Sánchez-Martín, Oscar Gomis, Robert Oliva, Samuel Gallego Parra, Julio Pellicer-Porres, Gastón Garbarino, Frederico G. Alabarse, Srungarpu Nagabhusan Achary and Daniel Errandonea,
{"title":"传压介质对 Bi14MoO24 和 Bi14CrO24 化合物影响的高压结构研究","authors":"Pablo Botella*, Josu Sánchez-Martín, Oscar Gomis, Robert Oliva, Samuel Gallego Parra, Julio Pellicer-Porres, Gastón Garbarino, Frederico G. Alabarse, Srungarpu Nagabhusan Achary and Daniel Errandonea, ","doi":"10.1021/acs.cgd.4c0090410.1021/acs.cgd.4c00904","DOIUrl":null,"url":null,"abstract":"<p >An investigation of isostructural compounds Bi<sub>14</sub>MO<sub>24</sub>, where M is either Cr or Mo, has been conducted under high-pressure (HP) conditions, reaching up to 30 and 40 GPa, respectively. In situ synchrotron X-ray diffraction was employed to monitor alterations in the crystal structure induced by pressure. The compounds have been studied in two different experimental conditions, under hydrostatic conditions using He as pressure transmitting medium (PTM) or under plastic deformation without PTM. Remarkably, the use of helium gas as a PTM revealed isomorphic phase transitions unobserved previously when other PTMs were used. In the case of Bi<sub>14</sub>MoO<sub>24</sub>, in addition to the previously documented tetragonal (<i>I</i>4/<i>m</i>) to monoclinic (<i>C</i>2/<i>m</i>) transition, two new isomorphic (monoclinic–monoclinic) phase transitions have been identified. Conversely, Bi<sub>14</sub>CrO<sub>24</sub> exhibits two novel isomorphic (tetragonal–tetragonal) transitions preceding the tetragonal-monoclinic transformation. While analogous phase transitions were identified in experiments performed without PTM, an earlier pressure onset of phase transition was noted. Moreover, a new cubic phase coexisting with HP modification was observed in Bi<sub>14</sub>CrO<sub>24</sub>, providing insights into the behavior of these compounds under extreme conditions of shear-stress.</p>","PeriodicalId":34,"journal":{"name":"Crystal Growth & Design","volume":"24 22","pages":"9482–9491 9482–9491"},"PeriodicalIF":3.2000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-Pressure Structural Study on the Effects of Pressure-Transmitting Media on Bi14MoO24 and Bi14CrO24 Compounds\",\"authors\":\"Pablo Botella*, Josu Sánchez-Martín, Oscar Gomis, Robert Oliva, Samuel Gallego Parra, Julio Pellicer-Porres, Gastón Garbarino, Frederico G. Alabarse, Srungarpu Nagabhusan Achary and Daniel Errandonea, \",\"doi\":\"10.1021/acs.cgd.4c0090410.1021/acs.cgd.4c00904\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >An investigation of isostructural compounds Bi<sub>14</sub>MO<sub>24</sub>, where M is either Cr or Mo, has been conducted under high-pressure (HP) conditions, reaching up to 30 and 40 GPa, respectively. In situ synchrotron X-ray diffraction was employed to monitor alterations in the crystal structure induced by pressure. The compounds have been studied in two different experimental conditions, under hydrostatic conditions using He as pressure transmitting medium (PTM) or under plastic deformation without PTM. Remarkably, the use of helium gas as a PTM revealed isomorphic phase transitions unobserved previously when other PTMs were used. In the case of Bi<sub>14</sub>MoO<sub>24</sub>, in addition to the previously documented tetragonal (<i>I</i>4/<i>m</i>) to monoclinic (<i>C</i>2/<i>m</i>) transition, two new isomorphic (monoclinic–monoclinic) phase transitions have been identified. Conversely, Bi<sub>14</sub>CrO<sub>24</sub> exhibits two novel isomorphic (tetragonal–tetragonal) transitions preceding the tetragonal-monoclinic transformation. While analogous phase transitions were identified in experiments performed without PTM, an earlier pressure onset of phase transition was noted. Moreover, a new cubic phase coexisting with HP modification was observed in Bi<sub>14</sub>CrO<sub>24</sub>, providing insights into the behavior of these compounds under extreme conditions of shear-stress.</p>\",\"PeriodicalId\":34,\"journal\":{\"name\":\"Crystal Growth & Design\",\"volume\":\"24 22\",\"pages\":\"9482–9491 9482–9491\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Crystal Growth & Design\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.cgd.4c00904\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crystal Growth & Design","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.cgd.4c00904","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
在高压(HP)条件下,对等结构化合物 Bi14MO24(其中 M 为铬或 Mo)进行了研究,其压力分别高达 30 和 40 GPa。利用原位同步辐射 X 射线衍射法监测了压力引起的晶体结构变化。这些化合物在两种不同的实验条件下进行了研究,即使用氦气作为压力传递介质(PTM)的静水压条件下或不使用 PTM 的塑性变形条件下。值得注意的是,使用氦气作为压力传递介质揭示了之前使用其他压力传递介质时未观察到的同构相变。就 Bi14MoO24 而言,除了之前记录的四方(I4/m)到单斜(C2/m)的转变外,还发现了两个新的同构(单斜-单斜)相变。相反,Bi14CrO24 在发生四方-单斜转变之前出现了两个新的同构(四方-四方)转变。虽然在无 PTM 的实验中也发现了类似的相变,但相变的压力起始时间更早。此外,在 Bi14CrO24 中还观察到了与 HP 修饰共存的新立方相,这为了解这些化合物在极端剪切应力条件下的行为提供了启示。
High-Pressure Structural Study on the Effects of Pressure-Transmitting Media on Bi14MoO24 and Bi14CrO24 Compounds
An investigation of isostructural compounds Bi14MO24, where M is either Cr or Mo, has been conducted under high-pressure (HP) conditions, reaching up to 30 and 40 GPa, respectively. In situ synchrotron X-ray diffraction was employed to monitor alterations in the crystal structure induced by pressure. The compounds have been studied in two different experimental conditions, under hydrostatic conditions using He as pressure transmitting medium (PTM) or under plastic deformation without PTM. Remarkably, the use of helium gas as a PTM revealed isomorphic phase transitions unobserved previously when other PTMs were used. In the case of Bi14MoO24, in addition to the previously documented tetragonal (I4/m) to monoclinic (C2/m) transition, two new isomorphic (monoclinic–monoclinic) phase transitions have been identified. Conversely, Bi14CrO24 exhibits two novel isomorphic (tetragonal–tetragonal) transitions preceding the tetragonal-monoclinic transformation. While analogous phase transitions were identified in experiments performed without PTM, an earlier pressure onset of phase transition was noted. Moreover, a new cubic phase coexisting with HP modification was observed in Bi14CrO24, providing insights into the behavior of these compounds under extreme conditions of shear-stress.
期刊介绍:
The aim of Crystal Growth & Design is to stimulate crossfertilization of knowledge among scientists and engineers working in the fields of crystal growth, crystal engineering, and the industrial application of crystalline materials.
Crystal Growth & Design publishes theoretical and experimental studies of the physical, chemical, and biological phenomena and processes related to the design, growth, and application of crystalline materials. Synergistic approaches originating from different disciplines and technologies and integrating the fields of crystal growth, crystal engineering, intermolecular interactions, and industrial application are encouraged.