CADeTT:事件摄像机帧的上下文自适应深度二叉树无损压缩

IF 3.2 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Signal Processing Letters Pub Date : 2024-11-07 DOI:10.1109/LSP.2024.3493801
Ionut Schiopu;Radu Ciprian Bilcu
{"title":"CADeTT:事件摄像机帧的上下文自适应深度二叉树无损压缩","authors":"Ionut Schiopu;Radu Ciprian Bilcu","doi":"10.1109/LSP.2024.3493801","DOIUrl":null,"url":null,"abstract":"The letter proposes an efficient context-adaptive lossless compression method for encoding event frame sequences. A first contribution proposes the use of a deep-ternary-tree of the current pixel position context as the context-tree model selector. The arithmetic codec encodes each trinary symbol using the probability distribution of the associated context-tree-leaf model. Another contribution proposes a novel context design based on several frames, where the context order controls the codec's complexity. Another contribution proposes a model search procedure to replace the context-tree prune-and-encode strategy by searching for the closest “mature” context model between lower-order context-tree models. The experimental evaluation shows that the proposed method provides an improved coding performance of 34.34% and a smaller runtime of up to \n<inline-formula><tex-math>$5.18\\times$</tex-math></inline-formula>\n compared with state-of-the-art lossless image codec FLIF and, respectively, 6.95% and \n<inline-formula><tex-math>$14.42\\times$</tex-math></inline-formula>\n compared with our prior work.","PeriodicalId":13154,"journal":{"name":"IEEE Signal Processing Letters","volume":"31 ","pages":"3149-3153"},"PeriodicalIF":3.2000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CADeTT: Context-Adaptive Deep-Trinary-Tree Lossless Compression of Event Camera Frames\",\"authors\":\"Ionut Schiopu;Radu Ciprian Bilcu\",\"doi\":\"10.1109/LSP.2024.3493801\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The letter proposes an efficient context-adaptive lossless compression method for encoding event frame sequences. A first contribution proposes the use of a deep-ternary-tree of the current pixel position context as the context-tree model selector. The arithmetic codec encodes each trinary symbol using the probability distribution of the associated context-tree-leaf model. Another contribution proposes a novel context design based on several frames, where the context order controls the codec's complexity. Another contribution proposes a model search procedure to replace the context-tree prune-and-encode strategy by searching for the closest “mature” context model between lower-order context-tree models. The experimental evaluation shows that the proposed method provides an improved coding performance of 34.34% and a smaller runtime of up to \\n<inline-formula><tex-math>$5.18\\\\times$</tex-math></inline-formula>\\n compared with state-of-the-art lossless image codec FLIF and, respectively, 6.95% and \\n<inline-formula><tex-math>$14.42\\\\times$</tex-math></inline-formula>\\n compared with our prior work.\",\"PeriodicalId\":13154,\"journal\":{\"name\":\"IEEE Signal Processing Letters\",\"volume\":\"31 \",\"pages\":\"3149-3153\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Signal Processing Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10747109/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Signal Processing Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10747109/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

这封信提出了一种高效的上下文自适应无损压缩方法,用于编码事件帧序列。第一个贡献是提出使用当前像素位置上下文的深三叉树作为上下文树模型选择器。算术编解码器使用相关上下文树叶模型的概率分布对每个二进制符号进行编码。另一篇论文提出了一种基于多个帧的新型上下文设计,其中上下文顺序控制着编解码器的复杂性。另一篇论文提出了一种模型搜索程序,通过在低阶上下文树模型之间搜索最接近的 "成熟 "上下文模型来取代上下文树剪枝编码策略。实验评估表明,与最先进的无损图像编解码器 FLIF 相比,所提方法的编码性能提高了 34.34%,运行时间缩短了 5.18 美元/次;与我们之前的工作相比,所提方法的编码性能提高了 6.95%,运行时间缩短了 14.42 美元/次。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CADeTT: Context-Adaptive Deep-Trinary-Tree Lossless Compression of Event Camera Frames
The letter proposes an efficient context-adaptive lossless compression method for encoding event frame sequences. A first contribution proposes the use of a deep-ternary-tree of the current pixel position context as the context-tree model selector. The arithmetic codec encodes each trinary symbol using the probability distribution of the associated context-tree-leaf model. Another contribution proposes a novel context design based on several frames, where the context order controls the codec's complexity. Another contribution proposes a model search procedure to replace the context-tree prune-and-encode strategy by searching for the closest “mature” context model between lower-order context-tree models. The experimental evaluation shows that the proposed method provides an improved coding performance of 34.34% and a smaller runtime of up to $5.18\times$ compared with state-of-the-art lossless image codec FLIF and, respectively, 6.95% and $14.42\times$ compared with our prior work.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Signal Processing Letters
IEEE Signal Processing Letters 工程技术-工程:电子与电气
CiteScore
7.40
自引率
12.80%
发文量
339
审稿时长
2.8 months
期刊介绍: The IEEE Signal Processing Letters is a monthly, archival publication designed to provide rapid dissemination of original, cutting-edge ideas and timely, significant contributions in signal, image, speech, language and audio processing. Papers published in the Letters can be presented within one year of their appearance in signal processing conferences such as ICASSP, GlobalSIP and ICIP, and also in several workshop organized by the Signal Processing Society.
期刊最新文献
Diagnosis of Parkinson's Disease Based on Hybrid Fusion Approach of Offline Handwriting Images Differentiable Duration Refinement Using Internal Division for Non-Autoregressive Text-to-Speech SoLAD: Sampling Over Latent Adapter for Few Shot Generation Robust Multi-Prototypes Aware Integration for Zero-Shot Cross-Domain Slot Filling LFSamba: Marry SAM With Mamba for Light Field Salient Object Detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1