非线性随机比例投票问题的双时标学习自动机解决方案

IF 8.6 1区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS IEEE Transactions on Systems Man Cybernetics-Systems Pub Date : 2024-09-17 DOI:10.1109/TSMC.2024.3414832
Anis Yazidi;Hugo Hammer;David S. Leslie
{"title":"非线性随机比例投票问题的双时标学习自动机解决方案","authors":"Anis Yazidi;Hugo Hammer;David S. Leslie","doi":"10.1109/TSMC.2024.3414832","DOIUrl":null,"url":null,"abstract":"In this article, we introduce a novel learning automata (LA) solution to the nonlinear stochastic proportional polling (NSPP) problem. The only available solution to this problem in the literature is that given by Nicopolitidis et al. (2003), Obaidat et al. (2002), and Papadimitriou et al. (2002). It was shown to solve a large set of the adaptive resource allocation problems under noisy environments (Nicopolitidis et al., 2003; Obaidat et al., 2002; Papadimitriou and Pomportsis, 2000 and 1999; Nicopolitidis et al., 2004; Obaidat et al., 2001; and Papadimitriou and Pomportsis, 2000). We make a threefold contribution. First, we take a two-timescale approach to the field of LA by estimating the reward probabilities on a faster timescale than the timescale for updating the polling probabilities. Second, by making a not-obvious choice of the objective function, we show that the NSPP problem is indeed an instantiation of the stochastic nonlinear fractional equality knapsack (NFEK) problem, which is a substantial resource allocation problem based on the incomplete and noisy information (Granmo and Oommen, 2010). Third, in contrast to the legacy approach taken by Papadimitriou and Maritsas (1992 and 1996), we show through the extensive experimental results that our solution is remarkably robust to the choice of tuning parameters and that it outperforms the state of the art solution in terms of the Bayesian expected loss.","PeriodicalId":48915,"journal":{"name":"IEEE Transactions on Systems Man Cybernetics-Systems","volume":"54 12","pages":"7158-7169"},"PeriodicalIF":8.6000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Two-Timescale Learning Automata Solution to the Nonlinear Stochastic Proportional Polling Problem\",\"authors\":\"Anis Yazidi;Hugo Hammer;David S. Leslie\",\"doi\":\"10.1109/TSMC.2024.3414832\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we introduce a novel learning automata (LA) solution to the nonlinear stochastic proportional polling (NSPP) problem. The only available solution to this problem in the literature is that given by Nicopolitidis et al. (2003), Obaidat et al. (2002), and Papadimitriou et al. (2002). It was shown to solve a large set of the adaptive resource allocation problems under noisy environments (Nicopolitidis et al., 2003; Obaidat et al., 2002; Papadimitriou and Pomportsis, 2000 and 1999; Nicopolitidis et al., 2004; Obaidat et al., 2001; and Papadimitriou and Pomportsis, 2000). We make a threefold contribution. First, we take a two-timescale approach to the field of LA by estimating the reward probabilities on a faster timescale than the timescale for updating the polling probabilities. Second, by making a not-obvious choice of the objective function, we show that the NSPP problem is indeed an instantiation of the stochastic nonlinear fractional equality knapsack (NFEK) problem, which is a substantial resource allocation problem based on the incomplete and noisy information (Granmo and Oommen, 2010). Third, in contrast to the legacy approach taken by Papadimitriou and Maritsas (1992 and 1996), we show through the extensive experimental results that our solution is remarkably robust to the choice of tuning parameters and that it outperforms the state of the art solution in terms of the Bayesian expected loss.\",\"PeriodicalId\":48915,\"journal\":{\"name\":\"IEEE Transactions on Systems Man Cybernetics-Systems\",\"volume\":\"54 12\",\"pages\":\"7158-7169\"},\"PeriodicalIF\":8.6000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Systems Man Cybernetics-Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10681444/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Systems Man Cybernetics-Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10681444/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本文针对非线性随机比例投票(NSPP)问题提出了一种新颖的学习自动机(LA)解决方案。文献中对该问题唯一可用的解决方案是 Nicopolitidis 等人(2003 年)、Obaidat 等人(2002 年)和 Papadimitriou 等人(2002 年)给出的解决方案。该方法解决了大量噪声环境下的自适应资源分配问题(Nicopolitidis 等人,2003 年;Obaidat 等人,2002 年;Papadimitriou 和 Pomportsis,2000 年和 1999 年;Nicopolitidis 等人,2004 年;Obaidat 等人,2001 年;以及 Papadimitriou 和 Pomportsis,2000 年)。我们做出了三方面的贡献。首先,我们在 LA 领域采用了双时间尺度方法,在比更新投票概率的时间尺度更快的时间尺度上估计奖励概率。其次,通过对目标函数进行不明显的选择,我们证明了 NSPP 问题确实是随机非线性分数相等背包(NFEK)问题的实例化,而 NFEK 问题是一个基于不完整和噪声信息的实质性资源分配问题(Granmo 和 Oommen,2010 年)。第三,与 Papadimitriou 和 Maritsas(1992 年和 1996 年)采用的传统方法不同,我们通过大量实验结果表明,我们的解决方案对调整参数的选择具有显著的鲁棒性,而且在贝叶斯预期损失方面优于现有解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Two-Timescale Learning Automata Solution to the Nonlinear Stochastic Proportional Polling Problem
In this article, we introduce a novel learning automata (LA) solution to the nonlinear stochastic proportional polling (NSPP) problem. The only available solution to this problem in the literature is that given by Nicopolitidis et al. (2003), Obaidat et al. (2002), and Papadimitriou et al. (2002). It was shown to solve a large set of the adaptive resource allocation problems under noisy environments (Nicopolitidis et al., 2003; Obaidat et al., 2002; Papadimitriou and Pomportsis, 2000 and 1999; Nicopolitidis et al., 2004; Obaidat et al., 2001; and Papadimitriou and Pomportsis, 2000). We make a threefold contribution. First, we take a two-timescale approach to the field of LA by estimating the reward probabilities on a faster timescale than the timescale for updating the polling probabilities. Second, by making a not-obvious choice of the objective function, we show that the NSPP problem is indeed an instantiation of the stochastic nonlinear fractional equality knapsack (NFEK) problem, which is a substantial resource allocation problem based on the incomplete and noisy information (Granmo and Oommen, 2010). Third, in contrast to the legacy approach taken by Papadimitriou and Maritsas (1992 and 1996), we show through the extensive experimental results that our solution is remarkably robust to the choice of tuning parameters and that it outperforms the state of the art solution in terms of the Bayesian expected loss.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Systems Man Cybernetics-Systems
IEEE Transactions on Systems Man Cybernetics-Systems AUTOMATION & CONTROL SYSTEMS-COMPUTER SCIENCE, CYBERNETICS
CiteScore
18.50
自引率
11.50%
发文量
812
审稿时长
6 months
期刊介绍: The IEEE Transactions on Systems, Man, and Cybernetics: Systems encompasses the fields of systems engineering, covering issue formulation, analysis, and modeling throughout the systems engineering lifecycle phases. It addresses decision-making, issue interpretation, systems management, processes, and various methods such as optimization, modeling, and simulation in the development and deployment of large systems.
期刊最新文献
Table of Contents Table of Contents Introducing IEEE Collabratec Information For Authors IEEE Transactions on Systems, Man, and Cybernetics publication information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1