线性系统的新型事件触发迭代学习模型预测控制

IF 8.6 1区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS IEEE Transactions on Systems Man Cybernetics-Systems Pub Date : 2024-09-17 DOI:10.1109/TSMC.2024.3450126
Shuyu Zhang;Xiao-Dong Li;Xuefang Li
{"title":"线性系统的新型事件触发迭代学习模型预测控制","authors":"Shuyu Zhang;Xiao-Dong Li;Xuefang Li","doi":"10.1109/TSMC.2024.3450126","DOIUrl":null,"url":null,"abstract":"In this work, a novel event-triggered iterative learning model predictive control (ILMPC) framework is developed for a class of linear systems subject to input saturation and initial shift. First, a nominal ILMPC strategy is proposed to clearly demonstrate the design philosophy, in which an initial state learning scheme is incorporated to remove the identical initialization condition. Furthermore, in order to reduce the communication and computation loads of the proposed ILMPC approach, two efficient ILMPC strategies, namely, a time-direction event-triggered ILMPC and a hybrid time-iteration-direction event-triggered ILMPC schemes, are developed by considering the event-triggered strategies along the time and iteration axes. It is shown that the proposed event-triggered ILMPC strategies are able to save the communication and computation resources significantly while maintaining the tracking control performance. The convergence of the proposed ILMPC schemes are analyzed rigorously via the contraction mapping methodology and the Lyapunov-like theory, and the effectiveness of the proposed ILMPC method is verified through a numerical example.","PeriodicalId":48915,"journal":{"name":"IEEE Transactions on Systems Man Cybernetics-Systems","volume":"54 12","pages":"7619-7632"},"PeriodicalIF":8.6000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel Event-Triggered Iterative Learning Model Predictive Control for Linear Systems\",\"authors\":\"Shuyu Zhang;Xiao-Dong Li;Xuefang Li\",\"doi\":\"10.1109/TSMC.2024.3450126\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, a novel event-triggered iterative learning model predictive control (ILMPC) framework is developed for a class of linear systems subject to input saturation and initial shift. First, a nominal ILMPC strategy is proposed to clearly demonstrate the design philosophy, in which an initial state learning scheme is incorporated to remove the identical initialization condition. Furthermore, in order to reduce the communication and computation loads of the proposed ILMPC approach, two efficient ILMPC strategies, namely, a time-direction event-triggered ILMPC and a hybrid time-iteration-direction event-triggered ILMPC schemes, are developed by considering the event-triggered strategies along the time and iteration axes. It is shown that the proposed event-triggered ILMPC strategies are able to save the communication and computation resources significantly while maintaining the tracking control performance. The convergence of the proposed ILMPC schemes are analyzed rigorously via the contraction mapping methodology and the Lyapunov-like theory, and the effectiveness of the proposed ILMPC method is verified through a numerical example.\",\"PeriodicalId\":48915,\"journal\":{\"name\":\"IEEE Transactions on Systems Man Cybernetics-Systems\",\"volume\":\"54 12\",\"pages\":\"7619-7632\"},\"PeriodicalIF\":8.6000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Systems Man Cybernetics-Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10681443/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Systems Man Cybernetics-Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10681443/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本研究针对一类受输入饱和和初始偏移影响的线性系统,开发了一种新颖的事件触发迭代学习模型预测控制(ILMPC)框架。首先,提出了一种名义 ILMPC 策略,以清楚地展示设计理念,其中包含了一种初始状态学习方案,以消除相同的初始化条件。此外,为了减少所提出的 ILMPC 方法的通信和计算负荷,通过沿时间轴和迭代轴考虑事件触发策略,开发了两种高效的 ILMPC 策略,即时间方向事件触发的 ILMPC 和时间-迭代方向事件触发的混合 ILMPC 方案。结果表明,所提出的事件触发式 ILMPC 策略能够在保持跟踪控制性能的同时大大节省通信和计算资源。通过收缩映射方法和类 Lyapunov 理论对提出的 ILMPC 方案的收敛性进行了严格分析,并通过一个数值示例验证了提出的 ILMPC 方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Novel Event-Triggered Iterative Learning Model Predictive Control for Linear Systems
In this work, a novel event-triggered iterative learning model predictive control (ILMPC) framework is developed for a class of linear systems subject to input saturation and initial shift. First, a nominal ILMPC strategy is proposed to clearly demonstrate the design philosophy, in which an initial state learning scheme is incorporated to remove the identical initialization condition. Furthermore, in order to reduce the communication and computation loads of the proposed ILMPC approach, two efficient ILMPC strategies, namely, a time-direction event-triggered ILMPC and a hybrid time-iteration-direction event-triggered ILMPC schemes, are developed by considering the event-triggered strategies along the time and iteration axes. It is shown that the proposed event-triggered ILMPC strategies are able to save the communication and computation resources significantly while maintaining the tracking control performance. The convergence of the proposed ILMPC schemes are analyzed rigorously via the contraction mapping methodology and the Lyapunov-like theory, and the effectiveness of the proposed ILMPC method is verified through a numerical example.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Systems Man Cybernetics-Systems
IEEE Transactions on Systems Man Cybernetics-Systems AUTOMATION & CONTROL SYSTEMS-COMPUTER SCIENCE, CYBERNETICS
CiteScore
18.50
自引率
11.50%
发文量
812
审稿时长
6 months
期刊介绍: The IEEE Transactions on Systems, Man, and Cybernetics: Systems encompasses the fields of systems engineering, covering issue formulation, analysis, and modeling throughout the systems engineering lifecycle phases. It addresses decision-making, issue interpretation, systems management, processes, and various methods such as optimization, modeling, and simulation in the development and deployment of large systems.
期刊最新文献
Table of Contents Table of Contents Introducing IEEE Collabratec Information For Authors IEEE Transactions on Systems, Man, and Cybernetics publication information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1