在水滑石支撑的铁-锰-镍合金催化下,通过一系列羟化、裂环和水相重整过程从酚类污染物中生产合成气†。

IF 3.4 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY Reaction Chemistry & Engineering Pub Date : 2024-09-24 DOI:10.1039/D4RE00348A
Hanifrahmawan Sudibyo, Daniela V. Cabrera, Rodrigo Labatut, Calvin J. Supriyanto, Budhijanto Budhijanto and Adhika Widyaparaga
{"title":"在水滑石支撑的铁-锰-镍合金催化下,通过一系列羟化、裂环和水相重整过程从酚类污染物中生产合成气†。","authors":"Hanifrahmawan Sudibyo, Daniela V. Cabrera, Rodrigo Labatut, Calvin J. Supriyanto, Budhijanto Budhijanto and Adhika Widyaparaga","doi":"10.1039/D4RE00348A","DOIUrl":null,"url":null,"abstract":"<p >A trifunctional catalyst facilitating a series of hydroxylation, oxidative ring opening, and aqueous-phase reforming reactions was developed to convert phenolic wastewater into syngas. The definitive screening design experiment at 250 °C for 5 h with 1.75% H<small><sub>2</sub></small>O<small><sub>2</sub></small> and 2 wt% catalyst loading demonstrated the importance of Fe, Mn, and Ni among the first-row transition metals to be impregnated into hydrotalcite to acquire the trifunctional feature. The surface chemistry characterization revealed that they improved the amount of strong and weak Brønsted (SBrA and WBrA) and Lewis (SLA and WLA) acidic active sites. The mechanistic roles of these sites <em>via</em> semi-continuous kinetic investigation at 200–300 °C for 1–5 h with 1.75% H<small><sub>2</sub></small>O<small><sub>2</sub></small> and 2 wt% catalyst loading were unraveled: (1) SBrA (surface metal oxyhydroxides) facilitated hydroxylation and homolytic cleavage producing hydroxyphenols; (2) WBrA (surface metal hydroxides) promoted ring opening of hydroxyphenols yielding oxo- and di-carboxylic acids; (3) WLA (mineral phase with a tetrahedral coordination) catalyzed reforming of acids into syngas; and (4) SLA (mineral phase with an octahedral coordination) improved the H<small><sub>2</sub></small> yield by promoting the water–gas shift reaction. The optimal content of Fe, Mn, and Ni was 49.4, 21.2, and 29.4 wt%, respectively, from 20 wt% of active metals on the support to achieve the maximal organic carbon removal (∼82%) and H<small><sub>2</sub></small> yield (∼80%) with a CO-to-H<small><sub>2</sub></small> ratio of 0.6, useful for chemical building block synthesis. The optimized catalyst demonstrated high activity and reusability, with a turnover number and frequency of ∼1 × 10<small><sup>6</sup></small> and ∼6 × 10<small><sup>4</sup></small> s<small><sup>−1</sup></small>, respectively, marking a breakthrough in sustainable syngas production.</p>","PeriodicalId":101,"journal":{"name":"Reaction Chemistry & Engineering","volume":" 12","pages":" 3285-3298"},"PeriodicalIF":3.4000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Syngas production from phenolic pollutants via a series of hydroxylation, ring cleavage, and aqueous-phase reforming catalyzed by a hydrotalcite-supported Fe–Mn–Ni alloy†\",\"authors\":\"Hanifrahmawan Sudibyo, Daniela V. Cabrera, Rodrigo Labatut, Calvin J. Supriyanto, Budhijanto Budhijanto and Adhika Widyaparaga\",\"doi\":\"10.1039/D4RE00348A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >A trifunctional catalyst facilitating a series of hydroxylation, oxidative ring opening, and aqueous-phase reforming reactions was developed to convert phenolic wastewater into syngas. The definitive screening design experiment at 250 °C for 5 h with 1.75% H<small><sub>2</sub></small>O<small><sub>2</sub></small> and 2 wt% catalyst loading demonstrated the importance of Fe, Mn, and Ni among the first-row transition metals to be impregnated into hydrotalcite to acquire the trifunctional feature. The surface chemistry characterization revealed that they improved the amount of strong and weak Brønsted (SBrA and WBrA) and Lewis (SLA and WLA) acidic active sites. The mechanistic roles of these sites <em>via</em> semi-continuous kinetic investigation at 200–300 °C for 1–5 h with 1.75% H<small><sub>2</sub></small>O<small><sub>2</sub></small> and 2 wt% catalyst loading were unraveled: (1) SBrA (surface metal oxyhydroxides) facilitated hydroxylation and homolytic cleavage producing hydroxyphenols; (2) WBrA (surface metal hydroxides) promoted ring opening of hydroxyphenols yielding oxo- and di-carboxylic acids; (3) WLA (mineral phase with a tetrahedral coordination) catalyzed reforming of acids into syngas; and (4) SLA (mineral phase with an octahedral coordination) improved the H<small><sub>2</sub></small> yield by promoting the water–gas shift reaction. The optimal content of Fe, Mn, and Ni was 49.4, 21.2, and 29.4 wt%, respectively, from 20 wt% of active metals on the support to achieve the maximal organic carbon removal (∼82%) and H<small><sub>2</sub></small> yield (∼80%) with a CO-to-H<small><sub>2</sub></small> ratio of 0.6, useful for chemical building block synthesis. The optimized catalyst demonstrated high activity and reusability, with a turnover number and frequency of ∼1 × 10<small><sup>6</sup></small> and ∼6 × 10<small><sup>4</sup></small> s<small><sup>−1</sup></small>, respectively, marking a breakthrough in sustainable syngas production.</p>\",\"PeriodicalId\":101,\"journal\":{\"name\":\"Reaction Chemistry & Engineering\",\"volume\":\" 12\",\"pages\":\" 3285-3298\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reaction Chemistry & Engineering\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/re/d4re00348a\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reaction Chemistry & Engineering","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/re/d4re00348a","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

为将酚类废水转化为合成气,开发了一种三功能催化剂,可促进一系列羟化、氧化开环和水相重整反应。在 250 °C、1.75% H2O2 和 2 wt% 催化剂负载条件下进行 5 小时的确定性筛选设计实验表明,在第一排过渡金属中,Fe、Mn 和 Ni 对浸渍到水滑石中以获得三官能团特征具有重要意义。表面化学特性分析表明,这些金属提高了强弱布氏(SBrA 和 WBrA)和路易斯(SLA 和 WLA)酸性活性位点的数量。在 200-300 °C、1-5 小时、1.75% H2O2 和 2 wt% 催化剂负载的半连续动力学研究,揭示了这些位点的机理作用:(1) SBrA(表面金属氧氢氧化物)促进羟基化和均聚裂解,生成羟基苯酚;(2) WBrA(表面金属氢氧化物)促进羟基苯酚开环,生成氧代和二羧酸;(3) WLA(具有四面体配位的矿物相)催化酸转化为合成气;(4) SLA(具有八面体配位的矿物相)通过促进水气变换反应提高 H2 产率。铁、锰和镍的最佳含量分别为 49.4%、21.2% 和 29.4%,而活性金属在载体上的含量为 20%,从而实现了最大的有机碳去除率(∼82%)和 H2 产率(∼80%),CO-H2 比为 0.6,可用于化学构件合成。优化后的催化剂具有高活性和可重复使用性,其周转次数和频率分别为 ∼1 × 106 和 ∼6 × 104 s-1,标志着在可持续合成气生产方面取得了突破性进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Syngas production from phenolic pollutants via a series of hydroxylation, ring cleavage, and aqueous-phase reforming catalyzed by a hydrotalcite-supported Fe–Mn–Ni alloy†

A trifunctional catalyst facilitating a series of hydroxylation, oxidative ring opening, and aqueous-phase reforming reactions was developed to convert phenolic wastewater into syngas. The definitive screening design experiment at 250 °C for 5 h with 1.75% H2O2 and 2 wt% catalyst loading demonstrated the importance of Fe, Mn, and Ni among the first-row transition metals to be impregnated into hydrotalcite to acquire the trifunctional feature. The surface chemistry characterization revealed that they improved the amount of strong and weak Brønsted (SBrA and WBrA) and Lewis (SLA and WLA) acidic active sites. The mechanistic roles of these sites via semi-continuous kinetic investigation at 200–300 °C for 1–5 h with 1.75% H2O2 and 2 wt% catalyst loading were unraveled: (1) SBrA (surface metal oxyhydroxides) facilitated hydroxylation and homolytic cleavage producing hydroxyphenols; (2) WBrA (surface metal hydroxides) promoted ring opening of hydroxyphenols yielding oxo- and di-carboxylic acids; (3) WLA (mineral phase with a tetrahedral coordination) catalyzed reforming of acids into syngas; and (4) SLA (mineral phase with an octahedral coordination) improved the H2 yield by promoting the water–gas shift reaction. The optimal content of Fe, Mn, and Ni was 49.4, 21.2, and 29.4 wt%, respectively, from 20 wt% of active metals on the support to achieve the maximal organic carbon removal (∼82%) and H2 yield (∼80%) with a CO-to-H2 ratio of 0.6, useful for chemical building block synthesis. The optimized catalyst demonstrated high activity and reusability, with a turnover number and frequency of ∼1 × 106 and ∼6 × 104 s−1, respectively, marking a breakthrough in sustainable syngas production.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Reaction Chemistry & Engineering
Reaction Chemistry & Engineering Chemistry-Chemistry (miscellaneous)
CiteScore
6.60
自引率
7.70%
发文量
227
期刊介绍: Reaction Chemistry & Engineering is a new journal reporting cutting edge research into all aspects of making molecules for the benefit of fundamental research, applied processes and wider society. From fundamental, molecular-level chemistry to large scale chemical production, Reaction Chemistry & Engineering brings together communities of chemists and chemical engineers working to ensure the crucial role of reaction chemistry in today’s world.
期刊最新文献
Back cover Back cover Linear scaling relationships in homogeneous photoredox catalysis† Immobilization of cationic dye on photoluminescent hydroxyapatite particles through a citric acid bonding layer† ChemPren: a new and economical technology for conversion of waste plastics to light olefins
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1