Evgeniy G. Kiselev, Aleksey V. Demidenko, Aleksey G. Sukovatyi, Natalia D. Ipatova, Svetlana V. Prudnikova, Ivan V. Nemtsev, Mikhail A. Bayandin, Vladimir N. Ermolin, Tatiana G. Volova
{"title":"用细菌纳米纤维素或木粉增强聚(3-羟基丁酸酯)复合材料的物理化学、机械性能和生物降解研究","authors":"Evgeniy G. Kiselev, Aleksey V. Demidenko, Aleksey G. Sukovatyi, Natalia D. Ipatova, Svetlana V. Prudnikova, Ivan V. Nemtsev, Mikhail A. Bayandin, Vladimir N. Ermolin, Tatiana G. Volova","doi":"10.1007/s10570-024-06212-0","DOIUrl":null,"url":null,"abstract":"<div><p>The results of the study of plastic composites from degradable poly(3-hydroxybutyrate) P(3HB) and cellulose-containing natural materials of various origins are presented. For the first time, P(3HB) composites filled with bacterial nanocellulose (BNC) or wood (<i>Pinus sibirica</i>) flour (WF) were produced by melt pressing at 170 °C and 2000 Pa. The influence of the filler type and amount (30, 40, 50, 70 and 90 wt%) on the physicochemical and mechanical properties of the composites and their degradability in soil laboratory microcosms was revealed. The P(3HB)/WF composites compared with P(3HB)/BNC ones were thermally stable; their thermal degradation temperatures were 266 and 227 °C, respectively. Both composites had lower values of Young's modulus and fracture strength compared to P(3HB). As BNC content was increased, Young's modulus and fracture strength of the composites increased from 1831 to 14 MPa to 3049 and 19 MPa, in contrast to P(3HB)/WF, where the values decreased by a factor of 1.5–2.0. The half-life of composites with BNC and WF in soil was 180 and 220 days, respectively. Changes in the structure of the microbial community were determined as depending on the filler type; primary destructors among bacteria and fungi were isolated and identified. Environmentally friendly and completely degradable composites show promise as cellulose-plastic materials for practical application.</p></div>","PeriodicalId":511,"journal":{"name":"Cellulose","volume":"31 17","pages":"10303 - 10325"},"PeriodicalIF":4.9000,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Physicochemical, mechanical properties, and biodegradation studies of poly(3-hydroxybutyrate) composites reinforced with bacterial nanocellulose or wood flour\",\"authors\":\"Evgeniy G. Kiselev, Aleksey V. Demidenko, Aleksey G. Sukovatyi, Natalia D. Ipatova, Svetlana V. Prudnikova, Ivan V. Nemtsev, Mikhail A. Bayandin, Vladimir N. Ermolin, Tatiana G. Volova\",\"doi\":\"10.1007/s10570-024-06212-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The results of the study of plastic composites from degradable poly(3-hydroxybutyrate) P(3HB) and cellulose-containing natural materials of various origins are presented. For the first time, P(3HB) composites filled with bacterial nanocellulose (BNC) or wood (<i>Pinus sibirica</i>) flour (WF) were produced by melt pressing at 170 °C and 2000 Pa. The influence of the filler type and amount (30, 40, 50, 70 and 90 wt%) on the physicochemical and mechanical properties of the composites and their degradability in soil laboratory microcosms was revealed. The P(3HB)/WF composites compared with P(3HB)/BNC ones were thermally stable; their thermal degradation temperatures were 266 and 227 °C, respectively. Both composites had lower values of Young's modulus and fracture strength compared to P(3HB). As BNC content was increased, Young's modulus and fracture strength of the composites increased from 1831 to 14 MPa to 3049 and 19 MPa, in contrast to P(3HB)/WF, where the values decreased by a factor of 1.5–2.0. The half-life of composites with BNC and WF in soil was 180 and 220 days, respectively. Changes in the structure of the microbial community were determined as depending on the filler type; primary destructors among bacteria and fungi were isolated and identified. Environmentally friendly and completely degradable composites show promise as cellulose-plastic materials for practical application.</p></div>\",\"PeriodicalId\":511,\"journal\":{\"name\":\"Cellulose\",\"volume\":\"31 17\",\"pages\":\"10303 - 10325\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cellulose\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10570-024-06212-0\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, PAPER & WOOD\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellulose","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10570-024-06212-0","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, PAPER & WOOD","Score":null,"Total":0}
Physicochemical, mechanical properties, and biodegradation studies of poly(3-hydroxybutyrate) composites reinforced with bacterial nanocellulose or wood flour
The results of the study of plastic composites from degradable poly(3-hydroxybutyrate) P(3HB) and cellulose-containing natural materials of various origins are presented. For the first time, P(3HB) composites filled with bacterial nanocellulose (BNC) or wood (Pinus sibirica) flour (WF) were produced by melt pressing at 170 °C and 2000 Pa. The influence of the filler type and amount (30, 40, 50, 70 and 90 wt%) on the physicochemical and mechanical properties of the composites and their degradability in soil laboratory microcosms was revealed. The P(3HB)/WF composites compared with P(3HB)/BNC ones were thermally stable; their thermal degradation temperatures were 266 and 227 °C, respectively. Both composites had lower values of Young's modulus and fracture strength compared to P(3HB). As BNC content was increased, Young's modulus and fracture strength of the composites increased from 1831 to 14 MPa to 3049 and 19 MPa, in contrast to P(3HB)/WF, where the values decreased by a factor of 1.5–2.0. The half-life of composites with BNC and WF in soil was 180 and 220 days, respectively. Changes in the structure of the microbial community were determined as depending on the filler type; primary destructors among bacteria and fungi were isolated and identified. Environmentally friendly and completely degradable composites show promise as cellulose-plastic materials for practical application.
期刊介绍:
Cellulose is an international journal devoted to the dissemination of research and scientific and technological progress in the field of cellulose and related naturally occurring polymers. The journal is concerned with the pure and applied science of cellulose and related materials, and also with the development of relevant new technologies. This includes the chemistry, biochemistry, physics and materials science of cellulose and its sources, including wood and other biomass resources, and their derivatives. Coverage extends to the conversion of these polymers and resources into manufactured goods, such as pulp, paper, textiles, and manufactured as well natural fibers, and to the chemistry of materials used in their processing. Cellulose publishes review articles, research papers, and technical notes.