用于表面缺陷检测的固体侧向波产生和检测的激光超声波测量法

IF 0.9 4区 材料科学 Q4 MATERIALS SCIENCE, CHARACTERIZATION & TESTING Russian Journal of Nondestructive Testing Pub Date : 2024-11-18 DOI:10.1134/S1061830924601934
W. Djerir, T. Boutkedjirt, M. Ourak, R. Halimi, A. Allag, F. M. L. Rekbi, A. Rezzoug
{"title":"用于表面缺陷检测的固体侧向波产生和检测的激光超声波测量法","authors":"W. Djerir,&nbsp;T. Boutkedjirt,&nbsp;M. Ourak,&nbsp;R. Halimi,&nbsp;A. Allag,&nbsp;F. M. L. Rekbi,&nbsp;A. Rezzoug","doi":"10.1134/S1061830924601934","DOIUrl":null,"url":null,"abstract":"<p>The first section of this study is devoted to characterizing the lateral wave generated by a laser along the air-aluminum interface. This includes determining its propagation velocity, analyzing its spectrum, and evaluating the variation of its amplitude in relation to the generation/detection distance (<i>d</i>). The obtained results have shown that the lateral wave propagates at the speed of the longitudinal volume wave, following the <i>d</i><sup>–<i>n</i></sup> law, where <i>n</i> equals 2.46. Its spectrum exhibits a wide bandwidth, with a cutoff frequency of <i>fc</i> = 3 MHz. The second part of the paper focuses on utilizing these waves for surface defect detection, with a comparative analysis of results obtained with Rayleigh waves. Various tests were conducted to analyze the impact of defects on the lateral wave on transmitted or reflected modes. The outcomes illustrate modifications in the temporal signals and frequency spectra of the lateral wave in the presence of defects.</p>","PeriodicalId":764,"journal":{"name":"Russian Journal of Nondestructive Testing","volume":"60 8","pages":"859 - 867"},"PeriodicalIF":0.9000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Laser Ultrasonic Measurements for Generation and Detection of Lateral Waves in a Solid for Surface Defect Inspection\",\"authors\":\"W. Djerir,&nbsp;T. Boutkedjirt,&nbsp;M. Ourak,&nbsp;R. Halimi,&nbsp;A. Allag,&nbsp;F. M. L. Rekbi,&nbsp;A. Rezzoug\",\"doi\":\"10.1134/S1061830924601934\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The first section of this study is devoted to characterizing the lateral wave generated by a laser along the air-aluminum interface. This includes determining its propagation velocity, analyzing its spectrum, and evaluating the variation of its amplitude in relation to the generation/detection distance (<i>d</i>). The obtained results have shown that the lateral wave propagates at the speed of the longitudinal volume wave, following the <i>d</i><sup>–<i>n</i></sup> law, where <i>n</i> equals 2.46. Its spectrum exhibits a wide bandwidth, with a cutoff frequency of <i>fc</i> = 3 MHz. The second part of the paper focuses on utilizing these waves for surface defect detection, with a comparative analysis of results obtained with Rayleigh waves. Various tests were conducted to analyze the impact of defects on the lateral wave on transmitted or reflected modes. The outcomes illustrate modifications in the temporal signals and frequency spectra of the lateral wave in the presence of defects.</p>\",\"PeriodicalId\":764,\"journal\":{\"name\":\"Russian Journal of Nondestructive Testing\",\"volume\":\"60 8\",\"pages\":\"859 - 867\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Journal of Nondestructive Testing\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1061830924601934\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Nondestructive Testing","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1134/S1061830924601934","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0

摘要

本研究的第一部分专门描述激光沿空气-铝界面产生的横向波。这包括确定其传播速度、分析其频谱以及评估其振幅随产生/探测距离(d)的变化。研究结果表明,横向波以纵向体积波的速度传播,遵循 d-n 规律,其中 n 等于 2.46。其频谱带宽很宽,截止频率为 fc = 3 MHz。本文第二部分的重点是利用这些波进行表面缺陷检测,并对与瑞利波获得的结果进行比较分析。为了分析缺陷对横向波传输或反射模式的影响,进行了各种测试。结果表明,在存在缺陷的情况下,横向波的时间信号和频谱会发生变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Laser Ultrasonic Measurements for Generation and Detection of Lateral Waves in a Solid for Surface Defect Inspection

The first section of this study is devoted to characterizing the lateral wave generated by a laser along the air-aluminum interface. This includes determining its propagation velocity, analyzing its spectrum, and evaluating the variation of its amplitude in relation to the generation/detection distance (d). The obtained results have shown that the lateral wave propagates at the speed of the longitudinal volume wave, following the dn law, where n equals 2.46. Its spectrum exhibits a wide bandwidth, with a cutoff frequency of fc = 3 MHz. The second part of the paper focuses on utilizing these waves for surface defect detection, with a comparative analysis of results obtained with Rayleigh waves. Various tests were conducted to analyze the impact of defects on the lateral wave on transmitted or reflected modes. The outcomes illustrate modifications in the temporal signals and frequency spectra of the lateral wave in the presence of defects.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Russian Journal of Nondestructive Testing
Russian Journal of Nondestructive Testing 工程技术-材料科学:表征与测试
CiteScore
1.60
自引率
44.40%
发文量
59
审稿时长
6-12 weeks
期刊介绍: Russian Journal of Nondestructive Testing, a translation of Defectoskopiya, is a publication of the Russian Academy of Sciences. This publication offers current Russian research on the theory and technology of nondestructive testing of materials and components. It describes laboratory and industrial investigations of devices and instrumentation and provides reviews of new equipment developed for series manufacture. Articles cover all physical methods of nondestructive testing, including magnetic and electrical; ultrasonic; X-ray and Y-ray; capillary; liquid (color luminescence), and radio (for materials of low conductivity).
期刊最新文献
Laser Ultrasonic Measurements for Generation and Detection of Lateral Waves in a Solid for Surface Defect Inspection Sparse Optimal Design of Ultrasonic Phased Array for Efficient DMAS Imaging Developing a Method for Assessing the Degree of Hydrogenation of VT1-0 Titanium Alloy by the Acoustic Method Layered Composite Hydrogenated Films of Zirconium and Niobium: Production Method and Testing Using Thermo EMF (Thermoelectric Method) Evaluating Efficiency of Foreign Object Detection Technology Based on the Use of Passive Infrared Thermography
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1