Haoxiang Liang, Huansheng Song, Shaoyang Zhang, Yongfeng Bu
{"title":"从监控角度利用改进的 STPM 异常检测网络进行高速公路泄漏检测","authors":"Haoxiang Liang, Huansheng Song, Shaoyang Zhang, Yongfeng Bu","doi":"10.1007/s10489-024-06066-w","DOIUrl":null,"url":null,"abstract":"<p>Spillages may cause traffic congestion and incidents and seriously affect the efficiency of traffic operation. Due to the changeable shape and scale of a spill on a highway, the location of the spill is random, so the current background extraction and object detection methods cannot achieve good detection results for the spill. This paper proposes a highway spill detection method using an improved STPM anomaly detection network. The method is based on the STPM network and achieves detection through FFDNet image filtering, calculation of the global correlation features of the student and teacher networks, contour positioning of spillages in the feature map, and automatic collection of positive samples to train and update the model, achieving high-precision identification and positioning of the spillages. The experimental results of the custom-built top-view road surface spillage dataset and the MVTec anomaly detection dataset show that the method proposed in this paper can obtain an AOC-ROC value of 0.978 and a PRO score of 0.965 and can distinguish between spillages and reflective cones, avoiding the problem of false detection when spills are similar in appearance. Therefore, the proposed method has value in the research and engineering application of spill detection in special highway scenes.</p>","PeriodicalId":8041,"journal":{"name":"Applied Intelligence","volume":"55 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Highway spillage detection using an improved STPM anomaly detection network from a surveillance perspective\",\"authors\":\"Haoxiang Liang, Huansheng Song, Shaoyang Zhang, Yongfeng Bu\",\"doi\":\"10.1007/s10489-024-06066-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Spillages may cause traffic congestion and incidents and seriously affect the efficiency of traffic operation. Due to the changeable shape and scale of a spill on a highway, the location of the spill is random, so the current background extraction and object detection methods cannot achieve good detection results for the spill. This paper proposes a highway spill detection method using an improved STPM anomaly detection network. The method is based on the STPM network and achieves detection through FFDNet image filtering, calculation of the global correlation features of the student and teacher networks, contour positioning of spillages in the feature map, and automatic collection of positive samples to train and update the model, achieving high-precision identification and positioning of the spillages. The experimental results of the custom-built top-view road surface spillage dataset and the MVTec anomaly detection dataset show that the method proposed in this paper can obtain an AOC-ROC value of 0.978 and a PRO score of 0.965 and can distinguish between spillages and reflective cones, avoiding the problem of false detection when spills are similar in appearance. Therefore, the proposed method has value in the research and engineering application of spill detection in special highway scenes.</p>\",\"PeriodicalId\":8041,\"journal\":{\"name\":\"Applied Intelligence\",\"volume\":\"55 1\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10489-024-06066-w\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Intelligence","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10489-024-06066-w","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Highway spillage detection using an improved STPM anomaly detection network from a surveillance perspective
Spillages may cause traffic congestion and incidents and seriously affect the efficiency of traffic operation. Due to the changeable shape and scale of a spill on a highway, the location of the spill is random, so the current background extraction and object detection methods cannot achieve good detection results for the spill. This paper proposes a highway spill detection method using an improved STPM anomaly detection network. The method is based on the STPM network and achieves detection through FFDNet image filtering, calculation of the global correlation features of the student and teacher networks, contour positioning of spillages in the feature map, and automatic collection of positive samples to train and update the model, achieving high-precision identification and positioning of the spillages. The experimental results of the custom-built top-view road surface spillage dataset and the MVTec anomaly detection dataset show that the method proposed in this paper can obtain an AOC-ROC value of 0.978 and a PRO score of 0.965 and can distinguish between spillages and reflective cones, avoiding the problem of false detection when spills are similar in appearance. Therefore, the proposed method has value in the research and engineering application of spill detection in special highway scenes.
期刊介绍:
With a focus on research in artificial intelligence and neural networks, this journal addresses issues involving solutions of real-life manufacturing, defense, management, government and industrial problems which are too complex to be solved through conventional approaches and require the simulation of intelligent thought processes, heuristics, applications of knowledge, and distributed and parallel processing. The integration of these multiple approaches in solving complex problems is of particular importance.
The journal presents new and original research and technological developments, addressing real and complex issues applicable to difficult problems. It provides a medium for exchanging scientific research and technological achievements accomplished by the international community.