Ednaldo L. B. Junior, José Tarciso S. S. Junior, Francisco S. N. Lobo, Manuel E. Rodrigues, Diego Rubiera-Garcia, Luís F. Dias da Silva, Henrique A. Vieira
{"title":"黑色在棉花引力中反弹","authors":"Ednaldo L. B. Junior, José Tarciso S. S. Junior, Francisco S. N. Lobo, Manuel E. Rodrigues, Diego Rubiera-Garcia, Luís F. Dias da Silva, Henrique A. Vieira","doi":"10.1140/epjc/s10052-024-13568-x","DOIUrl":null,"url":null,"abstract":"<div><p>Recently, J. Harada proposed a theory relating gravity to the Cotton tensor, dubbed as “Cotton gravity” (CG). This is an extension of General Relativity such that every solution of the latter turns out to be a solution of the former (but the converse is not true) and, furthermore, it is possible to derive the cosmological constant as an integration constant within it. In this work we investigate CG by coupling it to both non-linear electrodynamics (NLED) and scalar fields. We study static and spherically symmetric solutions implementing a bouncing behaviour in the radial function so as to avoid the development of singularities, inspired by the Simpson–Visser black bounce and the Bardeen model, both interpreted as magnetic monopoles. We identify the NLED Lagrangian density and the scalar field potential generating such solutions, and investigate the corresponding gravitational configurations in terms of horizons, behaviour of the metric functions, and regularity of the Kretchsman curvature scalar. Our analysis extends the class of non-singular geometries found in the literature and paves the ground for further analysis of black holes in CG.</p></div>","PeriodicalId":788,"journal":{"name":"The European Physical Journal C","volume":"84 11","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjc/s10052-024-13568-x.pdf","citationCount":"0","resultStr":"{\"title\":\"Black bounces in Cotton gravity\",\"authors\":\"Ednaldo L. B. Junior, José Tarciso S. S. Junior, Francisco S. N. Lobo, Manuel E. Rodrigues, Diego Rubiera-Garcia, Luís F. Dias da Silva, Henrique A. Vieira\",\"doi\":\"10.1140/epjc/s10052-024-13568-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Recently, J. Harada proposed a theory relating gravity to the Cotton tensor, dubbed as “Cotton gravity” (CG). This is an extension of General Relativity such that every solution of the latter turns out to be a solution of the former (but the converse is not true) and, furthermore, it is possible to derive the cosmological constant as an integration constant within it. In this work we investigate CG by coupling it to both non-linear electrodynamics (NLED) and scalar fields. We study static and spherically symmetric solutions implementing a bouncing behaviour in the radial function so as to avoid the development of singularities, inspired by the Simpson–Visser black bounce and the Bardeen model, both interpreted as magnetic monopoles. We identify the NLED Lagrangian density and the scalar field potential generating such solutions, and investigate the corresponding gravitational configurations in terms of horizons, behaviour of the metric functions, and regularity of the Kretchsman curvature scalar. Our analysis extends the class of non-singular geometries found in the literature and paves the ground for further analysis of black holes in CG.</p></div>\",\"PeriodicalId\":788,\"journal\":{\"name\":\"The European Physical Journal C\",\"volume\":\"84 11\",\"pages\":\"\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1140/epjc/s10052-024-13568-x.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The European Physical Journal C\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epjc/s10052-024-13568-x\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, PARTICLES & FIELDS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal C","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjc/s10052-024-13568-x","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
Recently, J. Harada proposed a theory relating gravity to the Cotton tensor, dubbed as “Cotton gravity” (CG). This is an extension of General Relativity such that every solution of the latter turns out to be a solution of the former (but the converse is not true) and, furthermore, it is possible to derive the cosmological constant as an integration constant within it. In this work we investigate CG by coupling it to both non-linear electrodynamics (NLED) and scalar fields. We study static and spherically symmetric solutions implementing a bouncing behaviour in the radial function so as to avoid the development of singularities, inspired by the Simpson–Visser black bounce and the Bardeen model, both interpreted as magnetic monopoles. We identify the NLED Lagrangian density and the scalar field potential generating such solutions, and investigate the corresponding gravitational configurations in terms of horizons, behaviour of the metric functions, and regularity of the Kretchsman curvature scalar. Our analysis extends the class of non-singular geometries found in the literature and paves the ground for further analysis of black holes in CG.
期刊介绍:
Experimental Physics I: Accelerator Based High-Energy Physics
Hadron and lepton collider physics
Lepton-nucleon scattering
High-energy nuclear reactions
Standard model precision tests
Search for new physics beyond the standard model
Heavy flavour physics
Neutrino properties
Particle detector developments
Computational methods and analysis tools
Experimental Physics II: Astroparticle Physics
Dark matter searches
High-energy cosmic rays
Double beta decay
Long baseline neutrino experiments
Neutrino astronomy
Axions and other weakly interacting light particles
Gravitational waves and observational cosmology
Particle detector developments
Computational methods and analysis tools
Theoretical Physics I: Phenomenology of the Standard Model and Beyond
Electroweak interactions
Quantum chromo dynamics
Heavy quark physics and quark flavour mixing
Neutrino physics
Phenomenology of astro- and cosmoparticle physics
Meson spectroscopy and non-perturbative QCD
Low-energy effective field theories
Lattice field theory
High temperature QCD and heavy ion physics
Phenomenology of supersymmetric extensions of the SM
Phenomenology of non-supersymmetric extensions of the SM
Model building and alternative models of electroweak symmetry breaking
Flavour physics beyond the SM
Computational algorithms and tools...etc.