通过 π-π 相互作用制备含钌络合物的 DaTp COFs,用于可见光驱动的光催化过氧化氢生产

IF 4.3 2区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR Inorganic Chemistry Pub Date : 2024-11-19 DOI:10.1021/acs.inorgchem.4c04309
Xuesong Jiang, Aodi Wang, Jiani Peng, Xueling Song, Lei Wang
{"title":"通过 π-π 相互作用制备含钌络合物的 DaTp COFs,用于可见光驱动的光催化过氧化氢生产","authors":"Xuesong Jiang, Aodi Wang, Jiani Peng, Xueling Song, Lei Wang","doi":"10.1021/acs.inorgchem.4c04309","DOIUrl":null,"url":null,"abstract":"Hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) is a crucial energy carrier with growing significance in sustainable energy systems. Covalent organic frameworks (COFs) have recently emerged as promising materials for efficient H<sub>2</sub>O<sub>2</sub> photosynthesis, while transition-metal complexes are recognized for their efficacy as molecular photocatalysts in H<sub>2</sub>O<sub>2</sub> production. This study introduces a novel π–π interaction strategy to immobilize ruthenium complexes into COFs, using DaTp COF as a model system. This approach significantly enhances the photocatalytic activity for H<sub>2</sub>O<sub>2</sub> production, achieving an initial rate of 3276 μmol g<sup>–1</sup> h<sup>–1</sup> without using scavengers under visible-light irradiation (λ &gt; 420 nm). Notably, incorporating ruthenium complexes optimizes the oxygen reduction reaction pathways, shifting from a less efficient four-electron process to a more efficient two-electron process. Density functional theory calculations further reveal that ruthenium complexes not only broaden the light absorption spectrum of the COF but also increase water affinity, directly contributing to H<sub>2</sub>O<sub>2</sub> generation. These findings offer a strategic framework for designing and enhancing COFs in H<sub>2</sub>O<sub>2</sub> photosynthesis applications.","PeriodicalId":40,"journal":{"name":"Inorganic Chemistry","volume":"128 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preparing Ruthenium Complex-Contained DaTp COFs via π–π Interactions for Visible-Light-Driven Photocatalytic Hydrogen Peroxide Production\",\"authors\":\"Xuesong Jiang, Aodi Wang, Jiani Peng, Xueling Song, Lei Wang\",\"doi\":\"10.1021/acs.inorgchem.4c04309\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) is a crucial energy carrier with growing significance in sustainable energy systems. Covalent organic frameworks (COFs) have recently emerged as promising materials for efficient H<sub>2</sub>O<sub>2</sub> photosynthesis, while transition-metal complexes are recognized for their efficacy as molecular photocatalysts in H<sub>2</sub>O<sub>2</sub> production. This study introduces a novel π–π interaction strategy to immobilize ruthenium complexes into COFs, using DaTp COF as a model system. This approach significantly enhances the photocatalytic activity for H<sub>2</sub>O<sub>2</sub> production, achieving an initial rate of 3276 μmol g<sup>–1</sup> h<sup>–1</sup> without using scavengers under visible-light irradiation (λ &gt; 420 nm). Notably, incorporating ruthenium complexes optimizes the oxygen reduction reaction pathways, shifting from a less efficient four-electron process to a more efficient two-electron process. Density functional theory calculations further reveal that ruthenium complexes not only broaden the light absorption spectrum of the COF but also increase water affinity, directly contributing to H<sub>2</sub>O<sub>2</sub> generation. These findings offer a strategic framework for designing and enhancing COFs in H<sub>2</sub>O<sub>2</sub> photosynthesis applications.\",\"PeriodicalId\":40,\"journal\":{\"name\":\"Inorganic Chemistry\",\"volume\":\"128 1\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inorganic Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.inorgchem.4c04309\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.inorgchem.4c04309","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

摘要

过氧化氢(H2O2)是一种重要的能量载体,在可持续能源系统中的重要性与日俱增。近来,共价有机框架(COFs)已成为具有高效 H2O2 光合作用前景的材料,而过渡金属复合物作为分子光催化剂在 H2O2 生产中的功效也得到了认可。本研究以 DaTp COF 为模型系统,介绍了一种将钌配合物固定到 COF 中的新型 π-π 作用策略。这种方法大大提高了产生 H2O2 的光催化活性,在可见光(λ > 420 nm)照射下,无需使用清除剂即可达到 3276 μmol g-1 h-1 的初始速率。值得注意的是,钌复合物的加入优化了氧还原反应途径,从效率较低的四电子过程转变为效率较高的双电子过程。密度泛函理论计算进一步表明,钌络合物不仅拓宽了 COF 的光吸收光谱,还增加了水亲和力,直接促进了 H2O2 的生成。这些发现为设计和增强 COF 在 H2O2 光合作用中的应用提供了一个战略框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Preparing Ruthenium Complex-Contained DaTp COFs via π–π Interactions for Visible-Light-Driven Photocatalytic Hydrogen Peroxide Production
Hydrogen peroxide (H2O2) is a crucial energy carrier with growing significance in sustainable energy systems. Covalent organic frameworks (COFs) have recently emerged as promising materials for efficient H2O2 photosynthesis, while transition-metal complexes are recognized for their efficacy as molecular photocatalysts in H2O2 production. This study introduces a novel π–π interaction strategy to immobilize ruthenium complexes into COFs, using DaTp COF as a model system. This approach significantly enhances the photocatalytic activity for H2O2 production, achieving an initial rate of 3276 μmol g–1 h–1 without using scavengers under visible-light irradiation (λ > 420 nm). Notably, incorporating ruthenium complexes optimizes the oxygen reduction reaction pathways, shifting from a less efficient four-electron process to a more efficient two-electron process. Density functional theory calculations further reveal that ruthenium complexes not only broaden the light absorption spectrum of the COF but also increase water affinity, directly contributing to H2O2 generation. These findings offer a strategic framework for designing and enhancing COFs in H2O2 photosynthesis applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Inorganic Chemistry
Inorganic Chemistry 化学-无机化学与核化学
CiteScore
7.60
自引率
13.00%
发文量
1960
审稿时长
1.9 months
期刊介绍: Inorganic Chemistry publishes fundamental studies in all phases of inorganic chemistry. Coverage includes experimental and theoretical reports on quantitative studies of structure and thermodynamics, kinetics, mechanisms of inorganic reactions, bioinorganic chemistry, and relevant aspects of organometallic chemistry, solid-state phenomena, and chemical bonding theory. Emphasis is placed on the synthesis, structure, thermodynamics, reactivity, spectroscopy, and bonding properties of significant new and known compounds.
期刊最新文献
The Interplay of Cyclometalated-Ir and Mesoionic Imines: Stoichiometric and Catalytic Reactivities Diffuse Ferroelectric Phase Transition-Dependent Photovoltaic Effect in BiFeO3–BaTiO3-Based Solid Solutions Stoichiometry-Regulated Synthesis of Three Adenine-Based Coordination Polymers for Catalytic Excellence through the Synergistic Amalgamation of Coordinative Unsaturation and Lewis Basic Sites An Acid-Resistant Lanthanide Metal–Organic Framework Based on Tetraphenylethylene as an Electrochemical Nitrite Sensor Reduction of Nitrite in an Iron(II)-Nitrito Compound by Thiols and Selenol Produces Dinitrosyl Iron Complexes via an {FeNO}7 Intermediate
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1