Begoña Aguado, Lineke Begeman, Anne Günther, Matteo Iervolino, Florencia Soto, Ralph E. T. Vanstreels, Alice Reade, Adam Coerper, Ben Wallis, Antonio Alcamí, Meagan Dewar
{"title":"在南极洲寻找高致病性禽流感病毒","authors":"Begoña Aguado, Lineke Begeman, Anne Günther, Matteo Iervolino, Florencia Soto, Ralph E. T. Vanstreels, Alice Reade, Adam Coerper, Ben Wallis, Antonio Alcamí, Meagan Dewar","doi":"10.1038/s41564-024-01868-7","DOIUrl":null,"url":null,"abstract":"<p>The current panzootic spread of high pathogenicity avian influenza virus (HPAIV) subtype H5N1 clade 2.3.4.4b has caused unprecedented mortality in wild animals worldwide<sup>1</sup>. In 2022, the virus caused mass mortality of seabirds and marine mammals in South America, which raised concerns about HPAIV spreading to Antarctica. The wildlife in Antarctica is seasonally dense due to high populations found in breading colonies of birds and mammals, and many Antarctic sites are remote and difficult to access, meaning that HPAIV could have dramatic effects on its fauna without immediately being noticed. As a result, surveillance efforts in this area are crucial.</p><p>The detection of HPAIV in the sub-Antarctic islands of South Georgia was first reported in October 2023. It caused considerable mortalities of seabirds (for example, skuas, gulls and albatrosses) and marine mammals (for example, elephant seals and sea lions) during the subsequent months<sup>2</sup>. Recent phylogenetic analyses of the viral sequences from South Georgia demonstrated a single introduction from South America<sup>2</sup>. Wildlife mortality suspected to be related to HPAIV was reported in Antarctica as early as November 2023 (ref. <sup>3</sup>). The first case of HPAIV in Antarctica was confirmed in skuas (<i>Stercorarius</i> sp.) found dead in January 2024 near the Argentinian Primavera Base (Danco Coast, Antarctic Peninsula) and tested in February 2024 in a molecular diagnostic laboratory set up at the Spanish Gabriel de Castilla Station (Deception Island, South Shetland Islands)<sup>4</sup>. Having this on-site laboratory showed it was possible to perform the diagnoses in Antarctica itself, which gives results much faster and avoids the risk of losing sample quality during transport to laboratories outside Antarctica. HPAIV was later reported in dead skuas near the Czech Johann Gregor Mendel base<sup>5</sup>. The finding of sporadic or potential cases of HPAIV-infected skuas indicated that the virus had reached Antarctica. In response, we launched the Australis expedition to investigate the spread and impact of HPAIV at several remote sites, following a direct field diagnostic approach with a mobile laboratory on board.</p>","PeriodicalId":18992,"journal":{"name":"Nature Microbiology","volume":"22 1","pages":""},"PeriodicalIF":20.5000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Searching for high pathogenicity avian influenza virus in Antarctica\",\"authors\":\"Begoña Aguado, Lineke Begeman, Anne Günther, Matteo Iervolino, Florencia Soto, Ralph E. T. Vanstreels, Alice Reade, Adam Coerper, Ben Wallis, Antonio Alcamí, Meagan Dewar\",\"doi\":\"10.1038/s41564-024-01868-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The current panzootic spread of high pathogenicity avian influenza virus (HPAIV) subtype H5N1 clade 2.3.4.4b has caused unprecedented mortality in wild animals worldwide<sup>1</sup>. In 2022, the virus caused mass mortality of seabirds and marine mammals in South America, which raised concerns about HPAIV spreading to Antarctica. The wildlife in Antarctica is seasonally dense due to high populations found in breading colonies of birds and mammals, and many Antarctic sites are remote and difficult to access, meaning that HPAIV could have dramatic effects on its fauna without immediately being noticed. As a result, surveillance efforts in this area are crucial.</p><p>The detection of HPAIV in the sub-Antarctic islands of South Georgia was first reported in October 2023. It caused considerable mortalities of seabirds (for example, skuas, gulls and albatrosses) and marine mammals (for example, elephant seals and sea lions) during the subsequent months<sup>2</sup>. Recent phylogenetic analyses of the viral sequences from South Georgia demonstrated a single introduction from South America<sup>2</sup>. Wildlife mortality suspected to be related to HPAIV was reported in Antarctica as early as November 2023 (ref. <sup>3</sup>). The first case of HPAIV in Antarctica was confirmed in skuas (<i>Stercorarius</i> sp.) found dead in January 2024 near the Argentinian Primavera Base (Danco Coast, Antarctic Peninsula) and tested in February 2024 in a molecular diagnostic laboratory set up at the Spanish Gabriel de Castilla Station (Deception Island, South Shetland Islands)<sup>4</sup>. Having this on-site laboratory showed it was possible to perform the diagnoses in Antarctica itself, which gives results much faster and avoids the risk of losing sample quality during transport to laboratories outside Antarctica. HPAIV was later reported in dead skuas near the Czech Johann Gregor Mendel base<sup>5</sup>. The finding of sporadic or potential cases of HPAIV-infected skuas indicated that the virus had reached Antarctica. In response, we launched the Australis expedition to investigate the spread and impact of HPAIV at several remote sites, following a direct field diagnostic approach with a mobile laboratory on board.</p>\",\"PeriodicalId\":18992,\"journal\":{\"name\":\"Nature Microbiology\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":20.5000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s41564-024-01868-7\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41564-024-01868-7","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Searching for high pathogenicity avian influenza virus in Antarctica
The current panzootic spread of high pathogenicity avian influenza virus (HPAIV) subtype H5N1 clade 2.3.4.4b has caused unprecedented mortality in wild animals worldwide1. In 2022, the virus caused mass mortality of seabirds and marine mammals in South America, which raised concerns about HPAIV spreading to Antarctica. The wildlife in Antarctica is seasonally dense due to high populations found in breading colonies of birds and mammals, and many Antarctic sites are remote and difficult to access, meaning that HPAIV could have dramatic effects on its fauna without immediately being noticed. As a result, surveillance efforts in this area are crucial.
The detection of HPAIV in the sub-Antarctic islands of South Georgia was first reported in October 2023. It caused considerable mortalities of seabirds (for example, skuas, gulls and albatrosses) and marine mammals (for example, elephant seals and sea lions) during the subsequent months2. Recent phylogenetic analyses of the viral sequences from South Georgia demonstrated a single introduction from South America2. Wildlife mortality suspected to be related to HPAIV was reported in Antarctica as early as November 2023 (ref. 3). The first case of HPAIV in Antarctica was confirmed in skuas (Stercorarius sp.) found dead in January 2024 near the Argentinian Primavera Base (Danco Coast, Antarctic Peninsula) and tested in February 2024 in a molecular diagnostic laboratory set up at the Spanish Gabriel de Castilla Station (Deception Island, South Shetland Islands)4. Having this on-site laboratory showed it was possible to perform the diagnoses in Antarctica itself, which gives results much faster and avoids the risk of losing sample quality during transport to laboratories outside Antarctica. HPAIV was later reported in dead skuas near the Czech Johann Gregor Mendel base5. The finding of sporadic or potential cases of HPAIV-infected skuas indicated that the virus had reached Antarctica. In response, we launched the Australis expedition to investigate the spread and impact of HPAIV at several remote sites, following a direct field diagnostic approach with a mobile laboratory on board.
期刊介绍:
Nature Microbiology aims to cover a comprehensive range of topics related to microorganisms. This includes:
Evolution: The journal is interested in exploring the evolutionary aspects of microorganisms. This may include research on their genetic diversity, adaptation, and speciation over time.
Physiology and cell biology: Nature Microbiology seeks to understand the functions and characteristics of microorganisms at the cellular and physiological levels. This may involve studying their metabolism, growth patterns, and cellular processes.
Interactions: The journal focuses on the interactions microorganisms have with each other, as well as their interactions with hosts or the environment. This encompasses investigations into microbial communities, symbiotic relationships, and microbial responses to different environments.
Societal significance: Nature Microbiology recognizes the societal impact of microorganisms and welcomes studies that explore their practical applications. This may include research on microbial diseases, biotechnology, or environmental remediation.
In summary, Nature Microbiology is interested in research related to the evolution, physiology and cell biology of microorganisms, their interactions, and their societal relevance.