Mandana Amiri, Arnab Chakraborty, Simon Foreman, Mark Halpern, Alex S Hill, Gary Hinshaw, T. L. Landecker, Joshua MacEachern, Kiyoshi W. Masui, Juan Mena-Parra, Nikola Milutinovic, Laura Newburgh, Anna Ordog, Ue-Li Pen, Tristan Pinsonneault-Marotte, Alex Reda, Seth R. Siegel, Saurabh Singh, Haochen Wang, Dallas Wulf and The CHIME Collaboration
{"title":"加拿大氢强度绘图实验(CHIME)的全息光束测量","authors":"Mandana Amiri, Arnab Chakraborty, Simon Foreman, Mark Halpern, Alex S Hill, Gary Hinshaw, T. L. Landecker, Joshua MacEachern, Kiyoshi W. Masui, Juan Mena-Parra, Nikola Milutinovic, Laura Newburgh, Anna Ordog, Ue-Li Pen, Tristan Pinsonneault-Marotte, Alex Reda, Seth R. Siegel, Saurabh Singh, Haochen Wang, Dallas Wulf and The CHIME Collaboration","doi":"10.3847/1538-4357/ad8133","DOIUrl":null,"url":null,"abstract":"We present the first results of the holographic beam-mapping program for the Canadian Hydrogen Intensity Mapping Experiment (CHIME). We describe the implementation of a holographic technique as adapted for CHIME, and introduce the processing pipeline which prepares the raw holographic timestreams for analysis of beam features. We use data from six bright sources across the full 400–800 MHz observing band of CHIME to provide measurements of the copolar and cross-polar beam response in both amplitude and phase for all 1024 dual-polarized feeds in the array. In addition, we present comparisons with independent probes of the CHIME beam, which indicate the presence of polarized beam leakage. Holographic measurements of the beam have already been applied in science with CHIME, e.g., in estimating the detection significance of far-sidelobe fast radio bursts, and in validating the beam models used for CHIME’s first detections of 21 cm emission (in cross-correlation with measurements of large-scale structure from galaxy surveys and the Lyα forest). Measurements presented in this paper, and future holographic results, will provide a unique data set to characterize the CHIME beam and improve the experiment’s prospects for a detection of the baryon acoustic oscillation signal.","PeriodicalId":501813,"journal":{"name":"The Astrophysical Journal","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Holographic Beam Measurements of the Canadian Hydrogen Intensity Mapping Experiment (CHIME)\",\"authors\":\"Mandana Amiri, Arnab Chakraborty, Simon Foreman, Mark Halpern, Alex S Hill, Gary Hinshaw, T. L. Landecker, Joshua MacEachern, Kiyoshi W. Masui, Juan Mena-Parra, Nikola Milutinovic, Laura Newburgh, Anna Ordog, Ue-Li Pen, Tristan Pinsonneault-Marotte, Alex Reda, Seth R. Siegel, Saurabh Singh, Haochen Wang, Dallas Wulf and The CHIME Collaboration\",\"doi\":\"10.3847/1538-4357/ad8133\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present the first results of the holographic beam-mapping program for the Canadian Hydrogen Intensity Mapping Experiment (CHIME). We describe the implementation of a holographic technique as adapted for CHIME, and introduce the processing pipeline which prepares the raw holographic timestreams for analysis of beam features. We use data from six bright sources across the full 400–800 MHz observing band of CHIME to provide measurements of the copolar and cross-polar beam response in both amplitude and phase for all 1024 dual-polarized feeds in the array. In addition, we present comparisons with independent probes of the CHIME beam, which indicate the presence of polarized beam leakage. Holographic measurements of the beam have already been applied in science with CHIME, e.g., in estimating the detection significance of far-sidelobe fast radio bursts, and in validating the beam models used for CHIME’s first detections of 21 cm emission (in cross-correlation with measurements of large-scale structure from galaxy surveys and the Lyα forest). Measurements presented in this paper, and future holographic results, will provide a unique data set to characterize the CHIME beam and improve the experiment’s prospects for a detection of the baryon acoustic oscillation signal.\",\"PeriodicalId\":501813,\"journal\":{\"name\":\"The Astrophysical Journal\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Astrophysical Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3847/1538-4357/ad8133\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astrophysical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/1538-4357/ad8133","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Holographic Beam Measurements of the Canadian Hydrogen Intensity Mapping Experiment (CHIME)
We present the first results of the holographic beam-mapping program for the Canadian Hydrogen Intensity Mapping Experiment (CHIME). We describe the implementation of a holographic technique as adapted for CHIME, and introduce the processing pipeline which prepares the raw holographic timestreams for analysis of beam features. We use data from six bright sources across the full 400–800 MHz observing band of CHIME to provide measurements of the copolar and cross-polar beam response in both amplitude and phase for all 1024 dual-polarized feeds in the array. In addition, we present comparisons with independent probes of the CHIME beam, which indicate the presence of polarized beam leakage. Holographic measurements of the beam have already been applied in science with CHIME, e.g., in estimating the detection significance of far-sidelobe fast radio bursts, and in validating the beam models used for CHIME’s first detections of 21 cm emission (in cross-correlation with measurements of large-scale structure from galaxy surveys and the Lyα forest). Measurements presented in this paper, and future holographic results, will provide a unique data set to characterize the CHIME beam and improve the experiment’s prospects for a detection of the baryon acoustic oscillation signal.