Martina K. Narayanan, Brian Dodgeon, Michail Katsoulis, George B. Ploubidis, Richard J. Silverwood
{"title":"如何减少 COVID-19 调查中的选择偏差:来自五个国家队列的证据","authors":"Martina K. Narayanan, Brian Dodgeon, Michail Katsoulis, George B. Ploubidis, Richard J. Silverwood","doi":"10.1007/s10654-024-01164-y","DOIUrl":null,"url":null,"abstract":"<p>Non-response to surveys is a common problem; even more so during the COVID-19 pandemic with social distancing measures challenging data collection. As respondents often differ from non-respondents, this can introduce bias. The goal of the current study was to see if we can reduce bias and restore sample representativeness in a series of COVID-19 surveys embedded within five UK cohort studies by using the rich data available from previous waves of data collection. Three surveys were conducted during the pandemic across five UK cohorts: National Survey of Health and Development (NSHD, born 1946), 1958 National Child Development Study (NCDS), 1970 British Cohort Study (BCS70), Next Steps (born 1989-90) and Millennium Cohort Study (MCS, born 2000-02). Response rates in the COVID-19 surveys were lower compared to previous waves, especially in the younger cohorts. We identified bias due to systematic non-response in several variables, with more respondents in the most advantaged social class and among those with higher childhood cognitive ability. Making use of the rich data available pre-pandemic in these longitudinal studies, the application of non-response weights and multiple imputation was successful in reducing bias in parental social class and childhood cognitive ability, nearly eliminating it for the former. Surveys embedded within existing cohort studies offer a clear advantage over cross-sectional samples collected during the pandemic in terms of their ability to mitigate selection bias. This will enhance the quality and reliability of future research studying the medium and long-term effects of the pandemic.</p>","PeriodicalId":11907,"journal":{"name":"European Journal of Epidemiology","volume":"46 1","pages":""},"PeriodicalIF":7.7000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"How to mitigate selection bias in COVID-19 surveys: evidence from five national cohorts\",\"authors\":\"Martina K. Narayanan, Brian Dodgeon, Michail Katsoulis, George B. Ploubidis, Richard J. Silverwood\",\"doi\":\"10.1007/s10654-024-01164-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Non-response to surveys is a common problem; even more so during the COVID-19 pandemic with social distancing measures challenging data collection. As respondents often differ from non-respondents, this can introduce bias. The goal of the current study was to see if we can reduce bias and restore sample representativeness in a series of COVID-19 surveys embedded within five UK cohort studies by using the rich data available from previous waves of data collection. Three surveys were conducted during the pandemic across five UK cohorts: National Survey of Health and Development (NSHD, born 1946), 1958 National Child Development Study (NCDS), 1970 British Cohort Study (BCS70), Next Steps (born 1989-90) and Millennium Cohort Study (MCS, born 2000-02). Response rates in the COVID-19 surveys were lower compared to previous waves, especially in the younger cohorts. We identified bias due to systematic non-response in several variables, with more respondents in the most advantaged social class and among those with higher childhood cognitive ability. Making use of the rich data available pre-pandemic in these longitudinal studies, the application of non-response weights and multiple imputation was successful in reducing bias in parental social class and childhood cognitive ability, nearly eliminating it for the former. Surveys embedded within existing cohort studies offer a clear advantage over cross-sectional samples collected during the pandemic in terms of their ability to mitigate selection bias. This will enhance the quality and reliability of future research studying the medium and long-term effects of the pandemic.</p>\",\"PeriodicalId\":11907,\"journal\":{\"name\":\"European Journal of Epidemiology\",\"volume\":\"46 1\",\"pages\":\"\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Epidemiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10654-024-01164-y\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Epidemiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10654-024-01164-y","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
How to mitigate selection bias in COVID-19 surveys: evidence from five national cohorts
Non-response to surveys is a common problem; even more so during the COVID-19 pandemic with social distancing measures challenging data collection. As respondents often differ from non-respondents, this can introduce bias. The goal of the current study was to see if we can reduce bias and restore sample representativeness in a series of COVID-19 surveys embedded within five UK cohort studies by using the rich data available from previous waves of data collection. Three surveys were conducted during the pandemic across five UK cohorts: National Survey of Health and Development (NSHD, born 1946), 1958 National Child Development Study (NCDS), 1970 British Cohort Study (BCS70), Next Steps (born 1989-90) and Millennium Cohort Study (MCS, born 2000-02). Response rates in the COVID-19 surveys were lower compared to previous waves, especially in the younger cohorts. We identified bias due to systematic non-response in several variables, with more respondents in the most advantaged social class and among those with higher childhood cognitive ability. Making use of the rich data available pre-pandemic in these longitudinal studies, the application of non-response weights and multiple imputation was successful in reducing bias in parental social class and childhood cognitive ability, nearly eliminating it for the former. Surveys embedded within existing cohort studies offer a clear advantage over cross-sectional samples collected during the pandemic in terms of their ability to mitigate selection bias. This will enhance the quality and reliability of future research studying the medium and long-term effects of the pandemic.
期刊介绍:
The European Journal of Epidemiology, established in 1985, is a peer-reviewed publication that provides a platform for discussions on epidemiology in its broadest sense. It covers various aspects of epidemiologic research and statistical methods. The journal facilitates communication between researchers, educators, and practitioners in epidemiology, including those in clinical and community medicine. Contributions from diverse fields such as public health, preventive medicine, clinical medicine, health economics, and computational biology and data science, in relation to health and disease, are encouraged. While accepting submissions from all over the world, the journal particularly emphasizes European topics relevant to epidemiology. The published articles consist of empirical research findings, developments in methodology, and opinion pieces.