{"title":"增殖原行星盘中的流不稳定性:参数研究","authors":"Shiang-Chih Wang and Min-Kai Lin","doi":"10.3847/1538-4357/ad862d","DOIUrl":null,"url":null,"abstract":"The streaming instability (SI) is currently the leading candidate for triggering planetesimal formation in protoplanetary disks. Recently, a novel variation, the “azimuthal-drift” streaming instability (AdSI), was discovered in disks exhibiting laminar gas accretion. Unlike the classical SI, the AdSI does not require pressure gradients and can concentrate dust even at low abundances. We extend previous simulations of the AdSI to explore the impact of dust abundance, accretion-flow strength, pressure gradients, and grain size. For a dimensionless accretion-flow strength αM = 0.1 and particle Stokes number St = 0.1, we find the AdSI produces dust filaments for initial dust-to-gas ratios as low as ϵ = 0.01. For ϵ ≳ 1, maximum dust-to-gas ratios of order 100 are attained, which can be expected to undergo gravitational collapse. Furthermore, even in systems dominated by the classical SI, an accretion flow drives filament formation, without which the disk remains in a state of small-scale turbulence. Our results suggest that an underlying accretion flow facilitates dust concentration and may thus promote planetesimal formation.","PeriodicalId":501813,"journal":{"name":"The Astrophysical Journal","volume":"69 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Streaming Instabilities in Accreting Protoplanetary Disks: A Parameter Study\",\"authors\":\"Shiang-Chih Wang and Min-Kai Lin\",\"doi\":\"10.3847/1538-4357/ad862d\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The streaming instability (SI) is currently the leading candidate for triggering planetesimal formation in protoplanetary disks. Recently, a novel variation, the “azimuthal-drift” streaming instability (AdSI), was discovered in disks exhibiting laminar gas accretion. Unlike the classical SI, the AdSI does not require pressure gradients and can concentrate dust even at low abundances. We extend previous simulations of the AdSI to explore the impact of dust abundance, accretion-flow strength, pressure gradients, and grain size. For a dimensionless accretion-flow strength αM = 0.1 and particle Stokes number St = 0.1, we find the AdSI produces dust filaments for initial dust-to-gas ratios as low as ϵ = 0.01. For ϵ ≳ 1, maximum dust-to-gas ratios of order 100 are attained, which can be expected to undergo gravitational collapse. Furthermore, even in systems dominated by the classical SI, an accretion flow drives filament formation, without which the disk remains in a state of small-scale turbulence. Our results suggest that an underlying accretion flow facilitates dust concentration and may thus promote planetesimal formation.\",\"PeriodicalId\":501813,\"journal\":{\"name\":\"The Astrophysical Journal\",\"volume\":\"69 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Astrophysical Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3847/1538-4357/ad862d\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astrophysical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/1538-4357/ad862d","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Streaming Instabilities in Accreting Protoplanetary Disks: A Parameter Study
The streaming instability (SI) is currently the leading candidate for triggering planetesimal formation in protoplanetary disks. Recently, a novel variation, the “azimuthal-drift” streaming instability (AdSI), was discovered in disks exhibiting laminar gas accretion. Unlike the classical SI, the AdSI does not require pressure gradients and can concentrate dust even at low abundances. We extend previous simulations of the AdSI to explore the impact of dust abundance, accretion-flow strength, pressure gradients, and grain size. For a dimensionless accretion-flow strength αM = 0.1 and particle Stokes number St = 0.1, we find the AdSI produces dust filaments for initial dust-to-gas ratios as low as ϵ = 0.01. For ϵ ≳ 1, maximum dust-to-gas ratios of order 100 are attained, which can be expected to undergo gravitational collapse. Furthermore, even in systems dominated by the classical SI, an accretion flow drives filament formation, without which the disk remains in a state of small-scale turbulence. Our results suggest that an underlying accretion flow facilitates dust concentration and may thus promote planetesimal formation.