{"title":"基于酰基烯酮-炔烃环加成法的立方酮的合成","authors":"Erandi Liyanage Perera, Daesung Lee","doi":"10.1021/acs.joc.4c02442","DOIUrl":null,"url":null,"abstract":"We report herein a concise route for the total synthesis of rapicone. The key strategy to form the ynone intermediate involves an Fe(III)/TEMPO-catalyzed aerobic oxidation of a 1,3-dihydroisobenzofuran moiety. This ether oxidation for the simultaneous installation of the keto aldehyde allowed the effective formation of the required ynone intermediate. The concise total synthesis of rapicone is substantiated by the unique formal [4 + 2] cycloaddition of acyl ketene with alkynone and is completed in 7 steps with 9.4% overall yield.","PeriodicalId":57,"journal":{"name":"The Journal of Organic Chemistry","volume":"8 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis of Rapicone Based on Acyl Ketene–Alkyne Cycloaddition\",\"authors\":\"Erandi Liyanage Perera, Daesung Lee\",\"doi\":\"10.1021/acs.joc.4c02442\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We report herein a concise route for the total synthesis of rapicone. The key strategy to form the ynone intermediate involves an Fe(III)/TEMPO-catalyzed aerobic oxidation of a 1,3-dihydroisobenzofuran moiety. This ether oxidation for the simultaneous installation of the keto aldehyde allowed the effective formation of the required ynone intermediate. The concise total synthesis of rapicone is substantiated by the unique formal [4 + 2] cycloaddition of acyl ketene with alkynone and is completed in 7 steps with 9.4% overall yield.\",\"PeriodicalId\":57,\"journal\":{\"name\":\"The Journal of Organic Chemistry\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Organic Chemistry\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.joc.4c02442\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ORGANIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Organic Chemistry","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.joc.4c02442","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
Synthesis of Rapicone Based on Acyl Ketene–Alkyne Cycloaddition
We report herein a concise route for the total synthesis of rapicone. The key strategy to form the ynone intermediate involves an Fe(III)/TEMPO-catalyzed aerobic oxidation of a 1,3-dihydroisobenzofuran moiety. This ether oxidation for the simultaneous installation of the keto aldehyde allowed the effective formation of the required ynone intermediate. The concise total synthesis of rapicone is substantiated by the unique formal [4 + 2] cycloaddition of acyl ketene with alkynone and is completed in 7 steps with 9.4% overall yield.
期刊介绍:
The Journal of Organic Chemistry welcomes original contributions of fundamental research in all branches of the theory and practice of organic chemistry. In selecting manuscripts for publication, the editors place emphasis on the quality and novelty of the work, as well as the breadth of interest to the organic chemistry community.