表面平流-扩散方程的半拉格朗日径向基函数统一分割最邻近点法

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED Computers & Mathematics with Applications Pub Date : 2024-11-19 DOI:10.1016/j.camwa.2024.11.013
Yajun Liu, Yuanyang Qiao, Xinlong Feng
{"title":"表面平流-扩散方程的半拉格朗日径向基函数统一分割最邻近点法","authors":"Yajun Liu,&nbsp;Yuanyang Qiao,&nbsp;Xinlong Feng","doi":"10.1016/j.camwa.2024.11.013","DOIUrl":null,"url":null,"abstract":"<div><div>A semi-Lagrangian radial basis function partition of unity (RBF-PU) closest point method is designed for solving advection-diffusion equations on surfaces. This new meshfree method combines the semi-Lagrangian method with the RBF-PU closest point method. The semi-Lagrangian RBF-PU closest point method traces the departure point backwards along the velocity field based on patches at each time step. Therefore, it saves the computational cost compared with the semi-Lagrangian radial basis function finite difference (RBF-FD) closest point method. Our proposed RBF-PU closest point method for approximating the Laplace-Beltrami operator has two main advantages over the RBF-FD closest point method. Firstly, the RBF-PU closest point method to construct the local influence domain is not required to identify the size of the computational tube. Therefore, our method is more concise and easier to implement. Secondly, the RBF-PU closest point method not only improves the accuracy but also saves computational costs, and we confirm the advantage by testing differential accuracy. Numerical experiments verify the convergence and effectiveness of the semi-Lagrangian RBF-PU closest point method.</div></div>","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":"177 ","pages":"Pages 100-114"},"PeriodicalIF":2.9000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A semi-Lagrangian radial basis function partition of unity closest point method for advection-diffusion equations on surfaces\",\"authors\":\"Yajun Liu,&nbsp;Yuanyang Qiao,&nbsp;Xinlong Feng\",\"doi\":\"10.1016/j.camwa.2024.11.013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A semi-Lagrangian radial basis function partition of unity (RBF-PU) closest point method is designed for solving advection-diffusion equations on surfaces. This new meshfree method combines the semi-Lagrangian method with the RBF-PU closest point method. The semi-Lagrangian RBF-PU closest point method traces the departure point backwards along the velocity field based on patches at each time step. Therefore, it saves the computational cost compared with the semi-Lagrangian radial basis function finite difference (RBF-FD) closest point method. Our proposed RBF-PU closest point method for approximating the Laplace-Beltrami operator has two main advantages over the RBF-FD closest point method. Firstly, the RBF-PU closest point method to construct the local influence domain is not required to identify the size of the computational tube. Therefore, our method is more concise and easier to implement. Secondly, the RBF-PU closest point method not only improves the accuracy but also saves computational costs, and we confirm the advantage by testing differential accuracy. Numerical experiments verify the convergence and effectiveness of the semi-Lagrangian RBF-PU closest point method.</div></div>\",\"PeriodicalId\":55218,\"journal\":{\"name\":\"Computers & Mathematics with Applications\",\"volume\":\"177 \",\"pages\":\"Pages 100-114\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Mathematics with Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S089812212400511X\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S089812212400511X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

设计了一种半拉格朗日径向基函数统一分割(RBF-PU)近点法,用于求解曲面上的平流扩散方程。这种新的无网格方法结合了半拉格朗日法和 RBF-PU 最近点法。半拉格朗日 RBF-PU 最近点法根据每个时间步的补丁沿速度场向后追踪出发点。因此,与半拉格朗日径向基函数有限差分(RBF-FD)近点法相比,它节省了计算成本。与 RBF-FD 最近点法相比,我们提出的用于逼近拉普拉斯-贝尔特拉米算子的 RBF-PU 最近点法有两大优势。首先,RBF-PU 最近点法构建局部影响域时无需确定计算管的大小。因此,我们的方法更简洁,更容易实现。其次,RBF-PU 最邻近点法不仅提高了精度,还节省了计算成本,我们通过测试差分精度证实了这一优势。数值实验验证了半拉格朗日 RBF-PU 最近点方法的收敛性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A semi-Lagrangian radial basis function partition of unity closest point method for advection-diffusion equations on surfaces
A semi-Lagrangian radial basis function partition of unity (RBF-PU) closest point method is designed for solving advection-diffusion equations on surfaces. This new meshfree method combines the semi-Lagrangian method with the RBF-PU closest point method. The semi-Lagrangian RBF-PU closest point method traces the departure point backwards along the velocity field based on patches at each time step. Therefore, it saves the computational cost compared with the semi-Lagrangian radial basis function finite difference (RBF-FD) closest point method. Our proposed RBF-PU closest point method for approximating the Laplace-Beltrami operator has two main advantages over the RBF-FD closest point method. Firstly, the RBF-PU closest point method to construct the local influence domain is not required to identify the size of the computational tube. Therefore, our method is more concise and easier to implement. Secondly, the RBF-PU closest point method not only improves the accuracy but also saves computational costs, and we confirm the advantage by testing differential accuracy. Numerical experiments verify the convergence and effectiveness of the semi-Lagrangian RBF-PU closest point method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Mathematics with Applications
Computers & Mathematics with Applications 工程技术-计算机:跨学科应用
CiteScore
5.10
自引率
10.30%
发文量
396
审稿时长
9.9 weeks
期刊介绍: Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).
期刊最新文献
Static and vibration analyses of laminated conical shells under various boundary conditions using a modified scaled boundary finite element method An energy stable bound-preserving finite volume scheme for the Allen-Cahn equation based on operator splitting method The simplified weak Galerkin method with θ scheme and its reduced-order model for the elastodynamic problem on polygonal mesh Numerical analysis and simulation of a quasistatic frictional bilateral contact problem with damage, long-term memory and wear A subspace method based on the Neumann series for the solution of parametric linear systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1