Yang Ni, Jonathan Lebelt, Milena Barp, Florian Kreuter, Jiaye Jin, Hannah Buttkus, Martin Kretzschmar, Ralf Tonner-Zech, Knut R. Asmis, Tanja Gulder
{"title":"氟化环境中六氟磷酸盐引发的氢同位素交换 (HIE):通过强键活化实现芳香族化合物氘化的平台","authors":"Yang Ni, Jonathan Lebelt, Milena Barp, Florian Kreuter, Jiaye Jin, Hannah Buttkus, Martin Kretzschmar, Ralf Tonner-Zech, Knut R. Asmis, Tanja Gulder","doi":"10.1002/anie.202417889","DOIUrl":null,"url":null,"abstract":"There is a perpetual need for efficient and mild methods to integrate deuterium atoms into carbon frameworks through late-stage modifications. We have developed a simple and highly effective synthetic route for hydrogen isotope exchange (HIE) in aromatic compounds under ambient conditions. This method utilizes catalytic amounts of hexafluorophosphate (PF6−) in deuterated 1,1,1,3,3,3-hexafluoroisopropanol (HFIP-d1) and D2O. Phenols, anilines, anisoles, and heterocyclic compounds were converted with high yields and excellent deuterium incorporations, which allows for the synthesis of a wide range of deuterated aromatic compounds. Spectroscopic and theoretical studies show that an interactive H-bonding network triggered by HFIP-d1 activates the typically inert P-F bond in PF6- for D2O addition. The thus in-situ formed DPO2F2 triggers then HIE, offering a new way to deuterated building blocks, drugs, and natural-product derivatives with high deuterium incorporation via the activation of strong bonds.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"25 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hexafluorophosphate-Triggered Hydrogen Isotope Exchange (HIE) in Fluorinated Environments: A Platform for the Deuteration of Aromatic Compounds via Strong Bond Activation\",\"authors\":\"Yang Ni, Jonathan Lebelt, Milena Barp, Florian Kreuter, Jiaye Jin, Hannah Buttkus, Martin Kretzschmar, Ralf Tonner-Zech, Knut R. Asmis, Tanja Gulder\",\"doi\":\"10.1002/anie.202417889\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There is a perpetual need for efficient and mild methods to integrate deuterium atoms into carbon frameworks through late-stage modifications. We have developed a simple and highly effective synthetic route for hydrogen isotope exchange (HIE) in aromatic compounds under ambient conditions. This method utilizes catalytic amounts of hexafluorophosphate (PF6−) in deuterated 1,1,1,3,3,3-hexafluoroisopropanol (HFIP-d1) and D2O. Phenols, anilines, anisoles, and heterocyclic compounds were converted with high yields and excellent deuterium incorporations, which allows for the synthesis of a wide range of deuterated aromatic compounds. Spectroscopic and theoretical studies show that an interactive H-bonding network triggered by HFIP-d1 activates the typically inert P-F bond in PF6- for D2O addition. The thus in-situ formed DPO2F2 triggers then HIE, offering a new way to deuterated building blocks, drugs, and natural-product derivatives with high deuterium incorporation via the activation of strong bonds.\",\"PeriodicalId\":125,\"journal\":{\"name\":\"Angewandte Chemie International Edition\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":16.1000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie International Edition\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/anie.202417889\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202417889","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Hexafluorophosphate-Triggered Hydrogen Isotope Exchange (HIE) in Fluorinated Environments: A Platform for the Deuteration of Aromatic Compounds via Strong Bond Activation
There is a perpetual need for efficient and mild methods to integrate deuterium atoms into carbon frameworks through late-stage modifications. We have developed a simple and highly effective synthetic route for hydrogen isotope exchange (HIE) in aromatic compounds under ambient conditions. This method utilizes catalytic amounts of hexafluorophosphate (PF6−) in deuterated 1,1,1,3,3,3-hexafluoroisopropanol (HFIP-d1) and D2O. Phenols, anilines, anisoles, and heterocyclic compounds were converted with high yields and excellent deuterium incorporations, which allows for the synthesis of a wide range of deuterated aromatic compounds. Spectroscopic and theoretical studies show that an interactive H-bonding network triggered by HFIP-d1 activates the typically inert P-F bond in PF6- for D2O addition. The thus in-situ formed DPO2F2 triggers then HIE, offering a new way to deuterated building blocks, drugs, and natural-product derivatives with high deuterium incorporation via the activation of strong bonds.
期刊介绍:
Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.