Xiaolin Song, Xiaoyu Yin, Yingjie Zhu, Qi Su, Ying Bao
{"title":"棉花中双重谷胱甘肽代谢途径的进化及其对紫外线-B 胁迫的响应","authors":"Xiaolin Song, Xiaoyu Yin, Yingjie Zhu, Qi Su, Ying Bao","doi":"10.1002/ece3.70537","DOIUrl":null,"url":null,"abstract":"<p>Increasing levels of UV-B radiation caused by the greenhouse effect has become an emerging threat to crop health and yield. The glutathione (GSH) metabolic pathway is generally involved in plant stress responses through scavenging accumulated reactive oxygen species, and is therefore believed to play an essential role in enhancing plant tolerance to UV-B stress. However, the complex evolutionary details of this pathway in polyploid plants, especially under UV-B stress, remain largely unknown. Here, using the important allotetraploid crop, <i>Gossypium hirsutum</i>, as an example, we comprehensively investigated the composition and phylogenetic relationships of genes encoding 12 key structural enzymes in this pathway, and compared the expression changes of all the relevant genes under UV-B stress (16 kJ m<sup>−2</sup> d<sup>−1</sup>) based on six leaf transcriptomes. Consequently, we identified 205 structural genes by genome-wide searching and predicted 98 potential regulatory genes under multiple stress conditions by co-expression network analysis. Furthermore, we revealed that 19 structural genes including 5 homoeologous pairs and 96 regulatory genes possessing 25 homoeologous pairs were reticulately correlated without homoeologous selection preference under UV-B stress. This result suggests a complex rewiring and reassignment between structural genes and their regulatory networks in the duplicated metabolic pathways of polyploid cotton. This study extends our understanding of the molecular dynamics of the GSH metabolic pathway in response to UV-B stress in <i>G. hirsutum</i> and, more broadly, in polyploid plants.</p>","PeriodicalId":11467,"journal":{"name":"Ecology and Evolution","volume":"14 11","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ece3.70537","citationCount":"0","resultStr":"{\"title\":\"Evolution of Duplicated Glutathione Metabolic Pathway in Gossypium hirsutum and Its Response to UV-B Stress\",\"authors\":\"Xiaolin Song, Xiaoyu Yin, Yingjie Zhu, Qi Su, Ying Bao\",\"doi\":\"10.1002/ece3.70537\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Increasing levels of UV-B radiation caused by the greenhouse effect has become an emerging threat to crop health and yield. The glutathione (GSH) metabolic pathway is generally involved in plant stress responses through scavenging accumulated reactive oxygen species, and is therefore believed to play an essential role in enhancing plant tolerance to UV-B stress. However, the complex evolutionary details of this pathway in polyploid plants, especially under UV-B stress, remain largely unknown. Here, using the important allotetraploid crop, <i>Gossypium hirsutum</i>, as an example, we comprehensively investigated the composition and phylogenetic relationships of genes encoding 12 key structural enzymes in this pathway, and compared the expression changes of all the relevant genes under UV-B stress (16 kJ m<sup>−2</sup> d<sup>−1</sup>) based on six leaf transcriptomes. Consequently, we identified 205 structural genes by genome-wide searching and predicted 98 potential regulatory genes under multiple stress conditions by co-expression network analysis. Furthermore, we revealed that 19 structural genes including 5 homoeologous pairs and 96 regulatory genes possessing 25 homoeologous pairs were reticulately correlated without homoeologous selection preference under UV-B stress. This result suggests a complex rewiring and reassignment between structural genes and their regulatory networks in the duplicated metabolic pathways of polyploid cotton. This study extends our understanding of the molecular dynamics of the GSH metabolic pathway in response to UV-B stress in <i>G. hirsutum</i> and, more broadly, in polyploid plants.</p>\",\"PeriodicalId\":11467,\"journal\":{\"name\":\"Ecology and Evolution\",\"volume\":\"14 11\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ece3.70537\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecology and Evolution\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ece3.70537\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecology and Evolution","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ece3.70537","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
Evolution of Duplicated Glutathione Metabolic Pathway in Gossypium hirsutum and Its Response to UV-B Stress
Increasing levels of UV-B radiation caused by the greenhouse effect has become an emerging threat to crop health and yield. The glutathione (GSH) metabolic pathway is generally involved in plant stress responses through scavenging accumulated reactive oxygen species, and is therefore believed to play an essential role in enhancing plant tolerance to UV-B stress. However, the complex evolutionary details of this pathway in polyploid plants, especially under UV-B stress, remain largely unknown. Here, using the important allotetraploid crop, Gossypium hirsutum, as an example, we comprehensively investigated the composition and phylogenetic relationships of genes encoding 12 key structural enzymes in this pathway, and compared the expression changes of all the relevant genes under UV-B stress (16 kJ m−2 d−1) based on six leaf transcriptomes. Consequently, we identified 205 structural genes by genome-wide searching and predicted 98 potential regulatory genes under multiple stress conditions by co-expression network analysis. Furthermore, we revealed that 19 structural genes including 5 homoeologous pairs and 96 regulatory genes possessing 25 homoeologous pairs were reticulately correlated without homoeologous selection preference under UV-B stress. This result suggests a complex rewiring and reassignment between structural genes and their regulatory networks in the duplicated metabolic pathways of polyploid cotton. This study extends our understanding of the molecular dynamics of the GSH metabolic pathway in response to UV-B stress in G. hirsutum and, more broadly, in polyploid plants.
期刊介绍:
Ecology and Evolution is the peer reviewed journal for rapid dissemination of research in all areas of ecology, evolution and conservation science. The journal gives priority to quality research reports, theoretical or empirical, that develop our understanding of organisms and their diversity, interactions between them, and the natural environment.
Ecology and Evolution gives prompt and equal consideration to papers reporting theoretical, experimental, applied and descriptive work in terrestrial and aquatic environments. The journal will consider submissions across taxa in areas including but not limited to micro and macro ecological and evolutionary processes, characteristics of and interactions between individuals, populations, communities and the environment, physiological responses to environmental change, population genetics and phylogenetics, relatedness and kin selection, life histories, systematics and taxonomy, conservation genetics, extinction, speciation, adaption, behaviour, biodiversity, species abundance, macroecology, population and ecosystem dynamics, and conservation policy.