维度扩展蜻蜓互联网络的深入研究

IF 1.5 4区 计算机科学 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING Concurrency and Computation-Practice & Experience Pub Date : 2024-09-27 DOI:10.1002/cpe.8286
Yaodong Wang, Yamin Li
{"title":"维度扩展蜻蜓互联网络的深入研究","authors":"Yaodong Wang,&nbsp;Yamin Li","doi":"10.1002/cpe.8286","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Dragonfly topology is a commonly utilized design for interconnection networks in parallel and distributed systems. A classical dragonfly can be denoted as dragonfly(<span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n </mrow>\n <annotation>$$ k $$</annotation>\n </semantics></math>,<span></span><math>\n <semantics>\n <mrow>\n <mi>m</mi>\n </mrow>\n <annotation>$$ m $$</annotation>\n </semantics></math>,<span></span><math>\n <semantics>\n <mrow>\n <mi>l</mi>\n </mrow>\n <annotation>$$ l $$</annotation>\n </semantics></math>), where<span></span><math>\n <semantics>\n <mrow>\n <mi>m</mi>\n </mrow>\n <annotation>$$ m $$</annotation>\n </semantics></math> is the number of routers in a group,<span></span><math>\n <semantics>\n <mrow>\n <mi>l</mi>\n </mrow>\n <annotation>$$ l $$</annotation>\n </semantics></math> is the number of links per router connected to other groups, and<span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n </mrow>\n <annotation>$$ k $$</annotation>\n </semantics></math> is the number of links per router connected to compute nodes. Each router has other<span></span><math>\n <semantics>\n <mrow>\n <mi>m</mi>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$$ m-1 $$</annotation>\n </semantics></math> links fully connected to other<span></span><math>\n <semantics>\n <mrow>\n <mi>m</mi>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$$ m-1 $$</annotation>\n </semantics></math> routers within a group. Each group has<span></span><math>\n <semantics>\n <mrow>\n <mi>m</mi>\n <mi>l</mi>\n </mrow>\n <annotation>$$ ml $$</annotation>\n </semantics></math> links connected to other groups. The groups are also fully connected, therefore there are<span></span><math>\n <semantics>\n <mrow>\n <mi>m</mi>\n <mi>l</mi>\n <mo>+</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$$ ml+1 $$</annotation>\n </semantics></math> groups in total. The router radix in a dragonfly(<span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n </mrow>\n <annotation>$$ k $$</annotation>\n </semantics></math>,<span></span><math>\n <semantics>\n <mrow>\n <mi>m</mi>\n </mrow>\n <annotation>$$ m $$</annotation>\n </semantics></math>,<span></span><math>\n <semantics>\n <mrow>\n <mi>l</mi>\n </mrow>\n <annotation>$$ l $$</annotation>\n </semantics></math>) is<span></span><math>\n <semantics>\n <mrow>\n <mi>l</mi>\n <mo>+</mo>\n <mi>k</mi>\n <mo>+</mo>\n <mi>m</mi>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$$ l+k+m-1 $$</annotation>\n </semantics></math>. Building a large dragonfly system requires a large number of high-radix routers, increasing hardware costs. To reduce hardware costs, this paper proposes a more flexible topology called dimension-extended dragonfly (DED). Rather than routers in a group being fully connected, each router in a group is arranged in an<span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n </mrow>\n <annotation>$$ n $$</annotation>\n </semantics></math>-dimensional matrix, and routers of the same dimension are fully connected. We use<span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n </mrow>\n <annotation>$$ n $$</annotation>\n </semantics></math> to denote the dimension such that each group in the DED has<span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mrow>\n <mi>m</mi>\n </mrow>\n <mrow>\n <mi>n</mi>\n </mrow>\n </msup>\n </mrow>\n <annotation>$$ {m}^n $$</annotation>\n </semantics></math> routers. This study comprehensively evaluates DED in terms of cost, performance, fault tolerance, and packet latency. The findings show that DED provides a more economical hardware solution compared to traditional Dragonfly and Cascade topologies, especially for<span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>≥</mo>\n <mn>3</mn>\n </mrow>\n <annotation>$$ n\\ge 3 $$</annotation>\n </semantics></math>. Beyond cost-efficiency, DED enhances system design flexibility. It offers diverse possibilities for system scaling through different combinations of diameter and radix, giving system architects more adaptable options. To further enhance the versatility of DED, three disjoint path routing algorithms are proposed and their fault tolerance is evaluated through simulation. The simulation results also show that the packet latency of DED is lower than dragonfly and cascade.</p>\n </div>","PeriodicalId":55214,"journal":{"name":"Concurrency and Computation-Practice & Experience","volume":"36 27","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An in-depth study of dimension-extended dragonfly interconnection network\",\"authors\":\"Yaodong Wang,&nbsp;Yamin Li\",\"doi\":\"10.1002/cpe.8286\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Dragonfly topology is a commonly utilized design for interconnection networks in parallel and distributed systems. A classical dragonfly can be denoted as dragonfly(<span></span><math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n <annotation>$$ k $$</annotation>\\n </semantics></math>,<span></span><math>\\n <semantics>\\n <mrow>\\n <mi>m</mi>\\n </mrow>\\n <annotation>$$ m $$</annotation>\\n </semantics></math>,<span></span><math>\\n <semantics>\\n <mrow>\\n <mi>l</mi>\\n </mrow>\\n <annotation>$$ l $$</annotation>\\n </semantics></math>), where<span></span><math>\\n <semantics>\\n <mrow>\\n <mi>m</mi>\\n </mrow>\\n <annotation>$$ m $$</annotation>\\n </semantics></math> is the number of routers in a group,<span></span><math>\\n <semantics>\\n <mrow>\\n <mi>l</mi>\\n </mrow>\\n <annotation>$$ l $$</annotation>\\n </semantics></math> is the number of links per router connected to other groups, and<span></span><math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n <annotation>$$ k $$</annotation>\\n </semantics></math> is the number of links per router connected to compute nodes. Each router has other<span></span><math>\\n <semantics>\\n <mrow>\\n <mi>m</mi>\\n <mo>−</mo>\\n <mn>1</mn>\\n </mrow>\\n <annotation>$$ m-1 $$</annotation>\\n </semantics></math> links fully connected to other<span></span><math>\\n <semantics>\\n <mrow>\\n <mi>m</mi>\\n <mo>−</mo>\\n <mn>1</mn>\\n </mrow>\\n <annotation>$$ m-1 $$</annotation>\\n </semantics></math> routers within a group. Each group has<span></span><math>\\n <semantics>\\n <mrow>\\n <mi>m</mi>\\n <mi>l</mi>\\n </mrow>\\n <annotation>$$ ml $$</annotation>\\n </semantics></math> links connected to other groups. The groups are also fully connected, therefore there are<span></span><math>\\n <semantics>\\n <mrow>\\n <mi>m</mi>\\n <mi>l</mi>\\n <mo>+</mo>\\n <mn>1</mn>\\n </mrow>\\n <annotation>$$ ml+1 $$</annotation>\\n </semantics></math> groups in total. The router radix in a dragonfly(<span></span><math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n <annotation>$$ k $$</annotation>\\n </semantics></math>,<span></span><math>\\n <semantics>\\n <mrow>\\n <mi>m</mi>\\n </mrow>\\n <annotation>$$ m $$</annotation>\\n </semantics></math>,<span></span><math>\\n <semantics>\\n <mrow>\\n <mi>l</mi>\\n </mrow>\\n <annotation>$$ l $$</annotation>\\n </semantics></math>) is<span></span><math>\\n <semantics>\\n <mrow>\\n <mi>l</mi>\\n <mo>+</mo>\\n <mi>k</mi>\\n <mo>+</mo>\\n <mi>m</mi>\\n <mo>−</mo>\\n <mn>1</mn>\\n </mrow>\\n <annotation>$$ l+k+m-1 $$</annotation>\\n </semantics></math>. Building a large dragonfly system requires a large number of high-radix routers, increasing hardware costs. To reduce hardware costs, this paper proposes a more flexible topology called dimension-extended dragonfly (DED). Rather than routers in a group being fully connected, each router in a group is arranged in an<span></span><math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n </mrow>\\n <annotation>$$ n $$</annotation>\\n </semantics></math>-dimensional matrix, and routers of the same dimension are fully connected. We use<span></span><math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n </mrow>\\n <annotation>$$ n $$</annotation>\\n </semantics></math> to denote the dimension such that each group in the DED has<span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mrow>\\n <mi>m</mi>\\n </mrow>\\n <mrow>\\n <mi>n</mi>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation>$$ {m}^n $$</annotation>\\n </semantics></math> routers. This study comprehensively evaluates DED in terms of cost, performance, fault tolerance, and packet latency. The findings show that DED provides a more economical hardware solution compared to traditional Dragonfly and Cascade topologies, especially for<span></span><math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n <mo>≥</mo>\\n <mn>3</mn>\\n </mrow>\\n <annotation>$$ n\\\\ge 3 $$</annotation>\\n </semantics></math>. Beyond cost-efficiency, DED enhances system design flexibility. It offers diverse possibilities for system scaling through different combinations of diameter and radix, giving system architects more adaptable options. To further enhance the versatility of DED, three disjoint path routing algorithms are proposed and their fault tolerance is evaluated through simulation. The simulation results also show that the packet latency of DED is lower than dragonfly and cascade.</p>\\n </div>\",\"PeriodicalId\":55214,\"journal\":{\"name\":\"Concurrency and Computation-Practice & Experience\",\"volume\":\"36 27\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Concurrency and Computation-Practice & Experience\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cpe.8286\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Concurrency and Computation-Practice & Experience","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpe.8286","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

蜻蜓拓扑是并行和分布式系统中常用的互连网络设计。经典的蜻蜓可以表示为 dragonfly( k $$ k $$ , m $$ m $$ , l $$ l $$),其中 m $$ m $$ 是组中路由器的数量,l $$ l $$ 是每个路由器连接到其他组的链接数,k $$ k $$ 是每个路由器连接到计算节点的链接数。每个路由器都有 m - 1 $$ m-1 $$ 个链接与组内其他 m - 1 $$ m-1 $$ 个路由器完全相连。每个组都有 m l $ m$ ml $ 链接与其他组相连。各组也是完全连接的,因此总共有 m l + 1 $ ml+1 $ $ 组。蜻蜓(k $$ k $$ , m $$ m $$ , l $$ l $$)的路由器半角为 l + k + m - 1 $$ l+k+m-1 $$。构建一个大型蜻蜓系统需要大量高分辨率路由器,从而增加了硬件成本。为了降低硬件成本,本文提出了一种更灵活的拓扑结构,称为维度扩展蜻蜓(DED)。一个组中的每个路由器不是完全连接的,而是排列在一个 n $$ n $$ 的维度矩阵中,相同维度的路由器是完全连接的。我们使用 n $$ n $$ 表示维度,这样 DED 中的每个组都有 m n $$ {m}^n $$ 路由器。本研究从成本、性能、容错和数据包延迟等方面对 DED 进行了全面评估。研究结果表明,与传统的 Dragonfly 和 Cascade 拓扑相比,DED 提供了更经济的硬件解决方案,尤其是在 n ≥ 3 $$ n\ge 3 $$ 的情况下。除了成本效益,DED 还增强了系统设计的灵活性。它通过直径和弧度的不同组合为系统扩展提供了多种可能性,为系统架构师提供了更多适应性更强的选择。为了进一步增强 DED 的多功能性,我们提出了三种不相交路径路由算法,并通过仿真评估了它们的容错性。仿真结果还表明,DED 的数据包延迟低于蜻蜓和级联。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An in-depth study of dimension-extended dragonfly interconnection network

Dragonfly topology is a commonly utilized design for interconnection networks in parallel and distributed systems. A classical dragonfly can be denoted as dragonfly( k $$ k $$ , m $$ m $$ , l $$ l $$ ), where m $$ m $$ is the number of routers in a group, l $$ l $$ is the number of links per router connected to other groups, and k $$ k $$ is the number of links per router connected to compute nodes. Each router has other m 1 $$ m-1 $$ links fully connected to other m 1 $$ m-1 $$ routers within a group. Each group has m l $$ ml $$ links connected to other groups. The groups are also fully connected, therefore there are m l + 1 $$ ml+1 $$ groups in total. The router radix in a dragonfly( k $$ k $$ , m $$ m $$ , l $$ l $$ ) is l + k + m 1 $$ l+k+m-1 $$ . Building a large dragonfly system requires a large number of high-radix routers, increasing hardware costs. To reduce hardware costs, this paper proposes a more flexible topology called dimension-extended dragonfly (DED). Rather than routers in a group being fully connected, each router in a group is arranged in an n $$ n $$ -dimensional matrix, and routers of the same dimension are fully connected. We use n $$ n $$ to denote the dimension such that each group in the DED has m n $$ {m}^n $$ routers. This study comprehensively evaluates DED in terms of cost, performance, fault tolerance, and packet latency. The findings show that DED provides a more economical hardware solution compared to traditional Dragonfly and Cascade topologies, especially for n 3 $$ n\ge 3 $$ . Beyond cost-efficiency, DED enhances system design flexibility. It offers diverse possibilities for system scaling through different combinations of diameter and radix, giving system architects more adaptable options. To further enhance the versatility of DED, three disjoint path routing algorithms are proposed and their fault tolerance is evaluated through simulation. The simulation results also show that the packet latency of DED is lower than dragonfly and cascade.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Concurrency and Computation-Practice & Experience
Concurrency and Computation-Practice & Experience 工程技术-计算机:理论方法
CiteScore
5.00
自引率
10.00%
发文量
664
审稿时长
9.6 months
期刊介绍: Concurrency and Computation: Practice and Experience (CCPE) publishes high-quality, original research papers, and authoritative research review papers, in the overlapping fields of: Parallel and distributed computing; High-performance computing; Computational and data science; Artificial intelligence and machine learning; Big data applications, algorithms, and systems; Network science; Ontologies and semantics; Security and privacy; Cloud/edge/fog computing; Green computing; and Quantum computing.
期刊最新文献
Issue Information Improving QoS in cloud resources scheduling using dynamic clustering algorithm and SM-CDC scheduling model Issue Information Issue Information Camellia oleifera trunks detection and identification based on improved YOLOv7
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1