GraCEImpute:用于单细胞 RNA-seq 数据估算的新型图聚类自动编码器方法

IF 7 2区 医学 Q1 BIOLOGY Computers in biology and medicine Pub Date : 2024-11-18 DOI:10.1016/j.compbiomed.2024.109400
Yueying Wang, Kewei Li, Ruochi Zhang, Yusi Fan, Lan Huang, Fengfeng Zhou
{"title":"GraCEImpute:用于单细胞 RNA-seq 数据估算的新型图聚类自动编码器方法","authors":"Yueying Wang, Kewei Li, Ruochi Zhang, Yusi Fan, Lan Huang, Fengfeng Zhou","doi":"10.1016/j.compbiomed.2024.109400","DOIUrl":null,"url":null,"abstract":"<p><p>Single-cell RNA sequencing (scRNA-seq) technology establishes a unique view for elucidating cellular heterogeneity in various biological systems. Yet the scRNA-seq data is compromised by a high dropout rate due to the technological limitation, and the substantial data loss poses computational challenges on subsequent analyses. This study introduces a novel graph clustering autoencoder (GCAE)-based imputation approach (GraCEImpute) to address the challenge of missing data in scRNA-seq data. Our comprehensive evaluation demonstrates that the GraCEImpute model outperforms existing approaches in accurately imputing dropout zeros within scRNA-seq data. The proposed GraCEImpute model also demonstrates the significantly enhanced quality of downstream scRNA-seq data analyses, including clustering, differential gene expression (DEG) analysis, and cell trajectory inference. These improvements underscore the GraCEImpute model's potential to facilitate a deeper understanding of cellular processes and heterogeneity through the scRNA-seq data analyses. The source code is released at https://www.healthinformaticslab.org/supp/.</p>","PeriodicalId":10578,"journal":{"name":"Computers in biology and medicine","volume":"184 ","pages":"109400"},"PeriodicalIF":7.0000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GraCEImpute: A novel graph clustering autoencoder approach for imputation of single-cell RNA-seq data.\",\"authors\":\"Yueying Wang, Kewei Li, Ruochi Zhang, Yusi Fan, Lan Huang, Fengfeng Zhou\",\"doi\":\"10.1016/j.compbiomed.2024.109400\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Single-cell RNA sequencing (scRNA-seq) technology establishes a unique view for elucidating cellular heterogeneity in various biological systems. Yet the scRNA-seq data is compromised by a high dropout rate due to the technological limitation, and the substantial data loss poses computational challenges on subsequent analyses. This study introduces a novel graph clustering autoencoder (GCAE)-based imputation approach (GraCEImpute) to address the challenge of missing data in scRNA-seq data. Our comprehensive evaluation demonstrates that the GraCEImpute model outperforms existing approaches in accurately imputing dropout zeros within scRNA-seq data. The proposed GraCEImpute model also demonstrates the significantly enhanced quality of downstream scRNA-seq data analyses, including clustering, differential gene expression (DEG) analysis, and cell trajectory inference. These improvements underscore the GraCEImpute model's potential to facilitate a deeper understanding of cellular processes and heterogeneity through the scRNA-seq data analyses. The source code is released at https://www.healthinformaticslab.org/supp/.</p>\",\"PeriodicalId\":10578,\"journal\":{\"name\":\"Computers in biology and medicine\",\"volume\":\"184 \",\"pages\":\"109400\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers in biology and medicine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.compbiomed.2024.109400\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in biology and medicine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.compbiomed.2024.109400","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

单细胞 RNA 测序(scRNA-seq)技术为阐明各种生物系统中的细胞异质性提供了独特的视角。然而,由于技术限制,scRNA-seq 数据的丢失率很高,这给后续分析带来了计算上的挑战。本研究介绍了一种新颖的基于图聚类自动编码器(GCAE)的估算方法(GraCEImpute),以应对scRNA-seq数据缺失的挑战。我们的综合评估结果表明,GraCEImpute 模型在精确归因 scRNA-seq 数据中的缺失零点方面优于现有方法。拟议的 GraCEImpute 模型还证明了下游 scRNA-seq 数据分析质量的显著提高,包括聚类、差异基因表达 (DEG) 分析和细胞轨迹推断。这些改进凸显了 GraCEImpute 模型通过 scRNA-seq 数据分析促进深入了解细胞过程和异质性的潜力。源代码发布于 https://www.healthinformaticslab.org/supp/。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
GraCEImpute: A novel graph clustering autoencoder approach for imputation of single-cell RNA-seq data.

Single-cell RNA sequencing (scRNA-seq) technology establishes a unique view for elucidating cellular heterogeneity in various biological systems. Yet the scRNA-seq data is compromised by a high dropout rate due to the technological limitation, and the substantial data loss poses computational challenges on subsequent analyses. This study introduces a novel graph clustering autoencoder (GCAE)-based imputation approach (GraCEImpute) to address the challenge of missing data in scRNA-seq data. Our comprehensive evaluation demonstrates that the GraCEImpute model outperforms existing approaches in accurately imputing dropout zeros within scRNA-seq data. The proposed GraCEImpute model also demonstrates the significantly enhanced quality of downstream scRNA-seq data analyses, including clustering, differential gene expression (DEG) analysis, and cell trajectory inference. These improvements underscore the GraCEImpute model's potential to facilitate a deeper understanding of cellular processes and heterogeneity through the scRNA-seq data analyses. The source code is released at https://www.healthinformaticslab.org/supp/.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers in biology and medicine
Computers in biology and medicine 工程技术-工程:生物医学
CiteScore
11.70
自引率
10.40%
发文量
1086
审稿时长
74 days
期刊介绍: Computers in Biology and Medicine is an international forum for sharing groundbreaking advancements in the use of computers in bioscience and medicine. This journal serves as a medium for communicating essential research, instruction, ideas, and information regarding the rapidly evolving field of computer applications in these domains. By encouraging the exchange of knowledge, we aim to facilitate progress and innovation in the utilization of computers in biology and medicine.
期刊最新文献
An adaptive enhanced human memory algorithm for multi-level image segmentation for pathological lung cancer images. Integrating multimodal learning for improved vital health parameter estimation. Riemannian manifold-based geometric clustering of continuous glucose monitoring to improve personalized diabetes management. Transformative artificial intelligence in gastric cancer: Advancements in diagnostic techniques. Artificial intelligence and deep learning algorithms for epigenetic sequence analysis: A review for epigeneticists and AI experts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1