Jason Devaux, Mélanie Mignot, Morgan Sarrut, Guillaume Limousin, Carlos Afonso, Sabine Heinisch
{"title":"优化在线 RPLC × SFC 的条件,以分析含有中性化合物的复杂样品:解决进样问题","authors":"Jason Devaux, Mélanie Mignot, Morgan Sarrut, Guillaume Limousin, Carlos Afonso, Sabine Heinisch","doi":"10.1016/j.chroma.2024.465518","DOIUrl":null,"url":null,"abstract":"<p><p>The online combination of reversed-phase liquid chromatography and supercritical fluid chromatography (online RPLC × SFC) is an attractive technique for the characterization of complex samples containing neutral compounds as the two techniques are highly complementary, especially with a polar stationary phase in supercritical fluid chromatography (SFC). However, the setup is challenging due to the presence of hydro-organic solvents in RPLC, which become injection solvent in SFC. In this study, numerous key experimental parameters were identified and found to have a major effect on peak shape under RPLC × SFC conditions. These parameters included the organic modifier in reversed-phase liquid chromatography (RPLC), the co-solvent in SFC, the gradient conditions and the column ID in SFC, the configuration of the valve and finally, the injection volume in SFC that should be maximized. Acetonitrile (ACN) in RPLC, a mixture of ACN and methanol (MeOH) (50/50, v/v) in SFC, a minimum initial composition of 5% B in SFC, column IDs of 1.0 mm and 2.1 mm in RPLC and SFC respectively and flushing the interface loops with pure CO<sub>2</sub> while adding the co-solvent after the valve, are all conditions that have been identified as perfectly suitable for online RPLC × SFC. They were successfully applied to the online RPLC × SFC separations of microalgae bio-oil samples. Despite unusual injection conditions, the peaks were symmetrical over the entire chromatogram, leading to a high separation power.</p>","PeriodicalId":347,"journal":{"name":"Journal of Chromatography A","volume":"1739 ","pages":"465518"},"PeriodicalIF":3.8000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing conditions in online RPLC × SFC for the analysis of complex samples containing neutral compounds: Solving injection issues.\",\"authors\":\"Jason Devaux, Mélanie Mignot, Morgan Sarrut, Guillaume Limousin, Carlos Afonso, Sabine Heinisch\",\"doi\":\"10.1016/j.chroma.2024.465518\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The online combination of reversed-phase liquid chromatography and supercritical fluid chromatography (online RPLC × SFC) is an attractive technique for the characterization of complex samples containing neutral compounds as the two techniques are highly complementary, especially with a polar stationary phase in supercritical fluid chromatography (SFC). However, the setup is challenging due to the presence of hydro-organic solvents in RPLC, which become injection solvent in SFC. In this study, numerous key experimental parameters were identified and found to have a major effect on peak shape under RPLC × SFC conditions. These parameters included the organic modifier in reversed-phase liquid chromatography (RPLC), the co-solvent in SFC, the gradient conditions and the column ID in SFC, the configuration of the valve and finally, the injection volume in SFC that should be maximized. Acetonitrile (ACN) in RPLC, a mixture of ACN and methanol (MeOH) (50/50, v/v) in SFC, a minimum initial composition of 5% B in SFC, column IDs of 1.0 mm and 2.1 mm in RPLC and SFC respectively and flushing the interface loops with pure CO<sub>2</sub> while adding the co-solvent after the valve, are all conditions that have been identified as perfectly suitable for online RPLC × SFC. They were successfully applied to the online RPLC × SFC separations of microalgae bio-oil samples. Despite unusual injection conditions, the peaks were symmetrical over the entire chromatogram, leading to a high separation power.</p>\",\"PeriodicalId\":347,\"journal\":{\"name\":\"Journal of Chromatography A\",\"volume\":\"1739 \",\"pages\":\"465518\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chromatography A\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1016/j.chroma.2024.465518\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chromatography A","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1016/j.chroma.2024.465518","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Optimizing conditions in online RPLC × SFC for the analysis of complex samples containing neutral compounds: Solving injection issues.
The online combination of reversed-phase liquid chromatography and supercritical fluid chromatography (online RPLC × SFC) is an attractive technique for the characterization of complex samples containing neutral compounds as the two techniques are highly complementary, especially with a polar stationary phase in supercritical fluid chromatography (SFC). However, the setup is challenging due to the presence of hydro-organic solvents in RPLC, which become injection solvent in SFC. In this study, numerous key experimental parameters were identified and found to have a major effect on peak shape under RPLC × SFC conditions. These parameters included the organic modifier in reversed-phase liquid chromatography (RPLC), the co-solvent in SFC, the gradient conditions and the column ID in SFC, the configuration of the valve and finally, the injection volume in SFC that should be maximized. Acetonitrile (ACN) in RPLC, a mixture of ACN and methanol (MeOH) (50/50, v/v) in SFC, a minimum initial composition of 5% B in SFC, column IDs of 1.0 mm and 2.1 mm in RPLC and SFC respectively and flushing the interface loops with pure CO2 while adding the co-solvent after the valve, are all conditions that have been identified as perfectly suitable for online RPLC × SFC. They were successfully applied to the online RPLC × SFC separations of microalgae bio-oil samples. Despite unusual injection conditions, the peaks were symmetrical over the entire chromatogram, leading to a high separation power.
期刊介绍:
The Journal of Chromatography A provides a forum for the publication of original research and critical reviews on all aspects of fundamental and applied separation science. The scope of the journal includes chromatography and related techniques, electromigration techniques (e.g. electrophoresis, electrochromatography), hyphenated and other multi-dimensional techniques, sample preparation, and detection methods such as mass spectrometry. Contributions consist mainly of research papers dealing with the theory of separation methods, instrumental developments and analytical and preparative applications of general interest.