Samuel C Talbot, Iovanna Pandelova, Bernd Markus Lange, Kelly J Vining
{"title":"六倍体 \"Mitcham \"薄荷(Mentha × piperita L.)基因组结构初探。","authors":"Samuel C Talbot, Iovanna Pandelova, Bernd Markus Lange, Kelly J Vining","doi":"10.1093/g3journal/jkae195","DOIUrl":null,"url":null,"abstract":"<p><p>Peppermint, Mentha × piperita L., is a hexaploid (2n = 6x = 72) and the predominant cultivar of commercial mint oil production in the US. This cultivar is threatened because of high susceptibility to the fungal disease verticillium wilt, caused by Verticillium dahliae. This report details the first draft polyploid chromosome-level genome assembly for this mint species. The \"Mitcham\" genome resource will broaden comparative studies of disease resistance, essential oil biosynthesis, and hybridization events within the genus Mentha. It will also be a valuable contribution to the body of phylogenetic studies involving Mentha and other genera that contain species with varying ploidy levels.</p>","PeriodicalId":12468,"journal":{"name":"G3: Genes|Genomes|Genetics","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A first look at the genome structure of hexaploid \\\"Mitcham\\\" peppermint (Mentha × piperita L.).\",\"authors\":\"Samuel C Talbot, Iovanna Pandelova, Bernd Markus Lange, Kelly J Vining\",\"doi\":\"10.1093/g3journal/jkae195\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Peppermint, Mentha × piperita L., is a hexaploid (2n = 6x = 72) and the predominant cultivar of commercial mint oil production in the US. This cultivar is threatened because of high susceptibility to the fungal disease verticillium wilt, caused by Verticillium dahliae. This report details the first draft polyploid chromosome-level genome assembly for this mint species. The \\\"Mitcham\\\" genome resource will broaden comparative studies of disease resistance, essential oil biosynthesis, and hybridization events within the genus Mentha. It will also be a valuable contribution to the body of phylogenetic studies involving Mentha and other genera that contain species with varying ploidy levels.</p>\",\"PeriodicalId\":12468,\"journal\":{\"name\":\"G3: Genes|Genomes|Genetics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"G3: Genes|Genomes|Genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/g3journal/jkae195\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"G3: Genes|Genomes|Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/g3journal/jkae195","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
A first look at the genome structure of hexaploid "Mitcham" peppermint (Mentha × piperita L.).
Peppermint, Mentha × piperita L., is a hexaploid (2n = 6x = 72) and the predominant cultivar of commercial mint oil production in the US. This cultivar is threatened because of high susceptibility to the fungal disease verticillium wilt, caused by Verticillium dahliae. This report details the first draft polyploid chromosome-level genome assembly for this mint species. The "Mitcham" genome resource will broaden comparative studies of disease resistance, essential oil biosynthesis, and hybridization events within the genus Mentha. It will also be a valuable contribution to the body of phylogenetic studies involving Mentha and other genera that contain species with varying ploidy levels.
期刊介绍:
G3: Genes, Genomes, Genetics provides a forum for the publication of high‐quality foundational research, particularly research that generates useful genetic and genomic information such as genome maps, single gene studies, genome‐wide association and QTL studies, as well as genome reports, mutant screens, and advances in methods and technology. The Editorial Board of G3 believes that rapid dissemination of these data is the necessary foundation for analysis that leads to mechanistic insights.
G3, published by the Genetics Society of America, meets the critical and growing need of the genetics community for rapid review and publication of important results in all areas of genetics. G3 offers the opportunity to publish the puzzling finding or to present unpublished results that may not have been submitted for review and publication due to a perceived lack of a potential high-impact finding. G3 has earned the DOAJ Seal, which is a mark of certification for open access journals, awarded by DOAJ to journals that achieve a high level of openness, adhere to Best Practice and high publishing standards.