在肾衰竭风险方程中加入生物标志物变化信息,可提高对 eGFR 2 中透析依赖性的预测能力。

IF 3.9 2区 医学 Q1 UROLOGY & NEPHROLOGY Clinical Kidney Journal Pub Date : 2024-10-24 eCollection Date: 2024-11-01 DOI:10.1093/ckj/sfae321
Akira Okada, Shotaro Aso, Kayo Ikeda Kurakawa, Reiko Inoue, Hideaki Watanabe, Yusuke Sasabuchi, Toshimasa Yamauchi, Hideo Yasunaga, Takashi Kadowaki, Satoko Yamaguchi, Masaomi Nangaku
{"title":"在肾衰竭风险方程中加入生物标志物变化信息,可提高对 eGFR 2 中透析依赖性的预测能力。","authors":"Akira Okada, Shotaro Aso, Kayo Ikeda Kurakawa, Reiko Inoue, Hideaki Watanabe, Yusuke Sasabuchi, Toshimasa Yamauchi, Hideo Yasunaga, Takashi Kadowaki, Satoko Yamaguchi, Masaomi Nangaku","doi":"10.1093/ckj/sfae321","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Although the kidney failure risk equation (KFRE), a well-known predictive model for predicting dialysis dependency, is useful, it remains unclear whether the addition of biomarker changes to the KFRE model in patients with an estimated glomerular filtration rate (eGFR) <30 ml/min/1.73 m<sup>2</sup> will improve its predictive value.</p><p><strong>Methods: </strong>We retrospectively identified adults with eGFR <30 ml/min/1.73 m<sup>2</sup> without dialysis dependency, and available health checkup data for two successive years using a large Japanese claims database (DeSC, Tokyo, Japan). We dichotomized the entire population into a training set (50%) and a validation set (the other half). To assess the incremental value in the predictive ability for dialysis dependency by the addition of changes in eGFR and proteinuria, we calculated the difference in the C-statistics and net reclassification index (NRI).</p><p><strong>Results: </strong>We identified 4499 individuals and observed 422 individuals (incidence of 45.2 per 1000 person-years) who developed dialysis dependency during the observation period (9343 person-years). Adding biomarker changes to the KFRE model improved C-statistics from 0.862 to 0.921, with an improvement of 0.060 (95% confidence intervals (CI) of 0.043-0.076, <i>P</i> < .001). The corresponding NRI was 0.773 (95% CI: 0.637-0.908), with an NRI for events of 0.544 (95% CI of 0.415-0.672) and NRI for non-events of 0.229 (95% CI of 0.186-0.272).</p><p><strong>Conclusions: </strong>The KFRE model was improved by incorporating yearly changes in its components. The added information may help clinicians identify high-risk individuals and improve their care.</p>","PeriodicalId":10435,"journal":{"name":"Clinical Kidney Journal","volume":"17 11","pages":"sfae321"},"PeriodicalIF":3.9000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11574387/pdf/","citationCount":"0","resultStr":"{\"title\":\"Adding biomarker change information to the kidney failure risk equation improves predictive ability for dialysis dependency in eGFR <30 ml/min/1.73 m<sup>2</sup>.\",\"authors\":\"Akira Okada, Shotaro Aso, Kayo Ikeda Kurakawa, Reiko Inoue, Hideaki Watanabe, Yusuke Sasabuchi, Toshimasa Yamauchi, Hideo Yasunaga, Takashi Kadowaki, Satoko Yamaguchi, Masaomi Nangaku\",\"doi\":\"10.1093/ckj/sfae321\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Although the kidney failure risk equation (KFRE), a well-known predictive model for predicting dialysis dependency, is useful, it remains unclear whether the addition of biomarker changes to the KFRE model in patients with an estimated glomerular filtration rate (eGFR) <30 ml/min/1.73 m<sup>2</sup> will improve its predictive value.</p><p><strong>Methods: </strong>We retrospectively identified adults with eGFR <30 ml/min/1.73 m<sup>2</sup> without dialysis dependency, and available health checkup data for two successive years using a large Japanese claims database (DeSC, Tokyo, Japan). We dichotomized the entire population into a training set (50%) and a validation set (the other half). To assess the incremental value in the predictive ability for dialysis dependency by the addition of changes in eGFR and proteinuria, we calculated the difference in the C-statistics and net reclassification index (NRI).</p><p><strong>Results: </strong>We identified 4499 individuals and observed 422 individuals (incidence of 45.2 per 1000 person-years) who developed dialysis dependency during the observation period (9343 person-years). Adding biomarker changes to the KFRE model improved C-statistics from 0.862 to 0.921, with an improvement of 0.060 (95% confidence intervals (CI) of 0.043-0.076, <i>P</i> < .001). The corresponding NRI was 0.773 (95% CI: 0.637-0.908), with an NRI for events of 0.544 (95% CI of 0.415-0.672) and NRI for non-events of 0.229 (95% CI of 0.186-0.272).</p><p><strong>Conclusions: </strong>The KFRE model was improved by incorporating yearly changes in its components. The added information may help clinicians identify high-risk individuals and improve their care.</p>\",\"PeriodicalId\":10435,\"journal\":{\"name\":\"Clinical Kidney Journal\",\"volume\":\"17 11\",\"pages\":\"sfae321\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11574387/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical Kidney Journal\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/ckj/sfae321\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"UROLOGY & NEPHROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Kidney Journal","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/ckj/sfae321","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"UROLOGY & NEPHROLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:尽管肾衰竭风险方程(KFRE)是预测透析依赖性的著名预测模型,但在估计肾小球滤过率(eGFR)为2的患者中,KFRE模型中加入生物标志物的变化是否能提高其预测价值仍不清楚:我们利用日本的一个大型索赔数据库(DeSC,日本东京),回顾性地识别了 eGFR 为 2 且无透析依赖的成人,并获得了连续两年的健康检查数据。我们将整个人群分为训练集(50%)和验证集(另一半)。为了评估加入 eGFR 和蛋白尿变化对透析依赖性预测能力的增量价值,我们计算了 C 统计量和净再分类指数(NRI)的差异:我们确定了 4499 人,并观察到 422 人(发病率为每 1000 人年 45.2 例)在观察期间(9343 人年)出现透析依赖。在 KFRE 模型中加入生物标志物变化可将 C 统计量从 0.862 提高到 0.921,提高了 0.060(95% 置信区间 (CI) 为 0.043-0.076,P 结论:KFRE 模型的 C 统计量从 0.862 提高到 0.921,提高了 0.060(95% 置信区间 (CI) 为 0.043-0.076,P 结论):KFRE模型通过纳入其组成部分的年度变化得到了改进。新增的信息可帮助临床医生识别高风险人群并改善对他们的护理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Adding biomarker change information to the kidney failure risk equation improves predictive ability for dialysis dependency in eGFR <30 ml/min/1.73 m2.

Background: Although the kidney failure risk equation (KFRE), a well-known predictive model for predicting dialysis dependency, is useful, it remains unclear whether the addition of biomarker changes to the KFRE model in patients with an estimated glomerular filtration rate (eGFR) <30 ml/min/1.73 m2 will improve its predictive value.

Methods: We retrospectively identified adults with eGFR <30 ml/min/1.73 m2 without dialysis dependency, and available health checkup data for two successive years using a large Japanese claims database (DeSC, Tokyo, Japan). We dichotomized the entire population into a training set (50%) and a validation set (the other half). To assess the incremental value in the predictive ability for dialysis dependency by the addition of changes in eGFR and proteinuria, we calculated the difference in the C-statistics and net reclassification index (NRI).

Results: We identified 4499 individuals and observed 422 individuals (incidence of 45.2 per 1000 person-years) who developed dialysis dependency during the observation period (9343 person-years). Adding biomarker changes to the KFRE model improved C-statistics from 0.862 to 0.921, with an improvement of 0.060 (95% confidence intervals (CI) of 0.043-0.076, P < .001). The corresponding NRI was 0.773 (95% CI: 0.637-0.908), with an NRI for events of 0.544 (95% CI of 0.415-0.672) and NRI for non-events of 0.229 (95% CI of 0.186-0.272).

Conclusions: The KFRE model was improved by incorporating yearly changes in its components. The added information may help clinicians identify high-risk individuals and improve their care.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Clinical Kidney Journal
Clinical Kidney Journal Medicine-Transplantation
CiteScore
6.70
自引率
10.90%
发文量
242
审稿时长
8 weeks
期刊介绍: About the Journal Clinical Kidney Journal: Clinical and Translational Nephrology (ckj), an official journal of the ERA-EDTA (European Renal Association-European Dialysis and Transplant Association), is a fully open access, online only journal publishing bimonthly. The journal is an essential educational and training resource integrating clinical, translational and educational research into clinical practice. ckj aims to contribute to a translational research culture among nephrologists and kidney pathologists that helps close the gap between basic researchers and practicing clinicians and promote sorely needed innovation in the Nephrology field. All research articles in this journal have undergone peer review.
期刊最新文献
Correction. Liver safety of tolvaptan in patients with autosomal dominant polycystic kidney disease: interim data from a post-authorization safety study. Integrated, person-centred care for patients with complex cardiovascular disease, diabetes mellitus and chronic kidney disease: a randomized trial. Adding biomarker change information to the kidney failure risk equation improves predictive ability for dialysis dependency in eGFR <30 ml/min/1.73 m2. The Emboless® venous chamber efficiently reduces air bubbles: a randomized study of chronic hemodialysis patients.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1