高级糖化终产物会加速淀粉样蛋白在脂肪细胞脂滴中的沉积。

IF 8.1 1区 生物学 Q1 CELL BIOLOGY Cell Death & Disease Pub Date : 2024-11-19 DOI:10.1038/s41419-024-07211-6
Roza Izgilov, Nadav Kislev, Eman Omari, Dafna Benayahu
{"title":"高级糖化终产物会加速淀粉样蛋白在脂肪细胞脂滴中的沉积。","authors":"Roza Izgilov, Nadav Kislev, Eman Omari, Dafna Benayahu","doi":"10.1038/s41419-024-07211-6","DOIUrl":null,"url":null,"abstract":"<p><p>Adipose tissue dysfunction is central to insulin resistance, and the emergence of type 2 diabetes (T2D) is associated with elevated levels of carbonyl metabolites from glucose metabolism. In this study, using methylglyoxal (MGO) and glycolaldehyde (GAD) carbonyl metabolites induced protein glycation, leading to misfolding and β-sheet formation and generation of advanced glycation end products (AGEs). The formed AGEs compromise adipocytes activity. Microscopic and spectroscopic assays were used to examine the impact of MGO and GAD on lipid droplet-associated proteins. The results provide information about how these conditions lead to the appearance of glycated and amyloidogenic proteins formation that hinders metabolism and autophagy in adipocytes. We measured the beneficial effects of metformin (MET), an anti-diabetic drug, on misfolded protein as assessed by thioflavin (ThT) spectroscopy and improved autophagy, determined by LC3 staining. In vitro findings were complemented by in vivo analysis of white adipose tissue (WAT), where lipid droplet-associated β-amyloid deposits were predominantly linked to adipose triglyceride lipase (ATGL), a lipid droplet protein. Bioinformatics, imaging, biochemical and MS/MS methods affirm ATGL's glycation and its role in β-sheet secondary structure formation. Our results highlighted the pronounced presence of amyloidogenic proteins in adipocytes treated with carbonyl compounds, potentially reshaping our understanding of adipocyte altered activity in the context of T2D. This in-depth exploration offers novel perspectives on related pathophysiology and underscores the potential of adipocytes as pivotal therapeutic targets, bridging T2D, amyloidosis, protein glycation, and adipocyte malfunction.</p>","PeriodicalId":9734,"journal":{"name":"Cell Death & Disease","volume":"15 11","pages":"846"},"PeriodicalIF":8.1000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advanced glycation end-products accelerate amyloid deposits in adipocyte's lipid droplets.\",\"authors\":\"Roza Izgilov, Nadav Kislev, Eman Omari, Dafna Benayahu\",\"doi\":\"10.1038/s41419-024-07211-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Adipose tissue dysfunction is central to insulin resistance, and the emergence of type 2 diabetes (T2D) is associated with elevated levels of carbonyl metabolites from glucose metabolism. In this study, using methylglyoxal (MGO) and glycolaldehyde (GAD) carbonyl metabolites induced protein glycation, leading to misfolding and β-sheet formation and generation of advanced glycation end products (AGEs). The formed AGEs compromise adipocytes activity. Microscopic and spectroscopic assays were used to examine the impact of MGO and GAD on lipid droplet-associated proteins. The results provide information about how these conditions lead to the appearance of glycated and amyloidogenic proteins formation that hinders metabolism and autophagy in adipocytes. We measured the beneficial effects of metformin (MET), an anti-diabetic drug, on misfolded protein as assessed by thioflavin (ThT) spectroscopy and improved autophagy, determined by LC3 staining. In vitro findings were complemented by in vivo analysis of white adipose tissue (WAT), where lipid droplet-associated β-amyloid deposits were predominantly linked to adipose triglyceride lipase (ATGL), a lipid droplet protein. Bioinformatics, imaging, biochemical and MS/MS methods affirm ATGL's glycation and its role in β-sheet secondary structure formation. Our results highlighted the pronounced presence of amyloidogenic proteins in adipocytes treated with carbonyl compounds, potentially reshaping our understanding of adipocyte altered activity in the context of T2D. This in-depth exploration offers novel perspectives on related pathophysiology and underscores the potential of adipocytes as pivotal therapeutic targets, bridging T2D, amyloidosis, protein glycation, and adipocyte malfunction.</p>\",\"PeriodicalId\":9734,\"journal\":{\"name\":\"Cell Death & Disease\",\"volume\":\"15 11\",\"pages\":\"846\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Death & Disease\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s41419-024-07211-6\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Death & Disease","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41419-024-07211-6","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

脂肪组织功能障碍是胰岛素抵抗的核心,而 2 型糖尿病(T2D)的出现与葡萄糖代谢产生的羰基代谢产物水平升高有关。本研究利用甲基乙二醛(MGO)和乙二醛(GAD)羰基代谢物诱导蛋白质糖化,导致错误折叠和β片形成,并生成高级糖化终产物(AGEs)。 形成的 AGEs 会损害脂肪细胞的活性。研究人员使用显微镜和光谱测定法来检测 MGO 和 GAD 对脂滴相关蛋白质的影响。结果提供了有关这些条件如何导致糖化和淀粉样蛋白形成,从而阻碍脂肪细胞的新陈代谢和自噬的信息。我们测量了抗糖尿病药物二甲双胍(MET)对用硫黄素(ThT)光谱评估的错误折叠蛋白和用 LC3 染色确定的自噬改善的有益影响。体外研究结果得到了体内白脂肪组织(WAT)分析的补充,其中脂滴相关的β淀粉样蛋白沉积物主要与脂滴蛋白--脂肪甘油三酯脂肪酶(ATGL)相关。生物信息学、成像、生化和 MS/MS 方法证实了 ATGL 的糖化及其在 β 片二级结构形成中的作用。我们的研究结果表明,在使用羰基化合物处理的脂肪细胞中明显存在淀粉样蛋白,这可能会重塑我们对 T2D 背景下脂肪细胞活性改变的理解。这一深入探讨为相关病理生理学提供了新的视角,并强调了脂肪细胞作为关键治疗靶点的潜力,是连接 T2D、淀粉样变性、蛋白糖化和脂肪细胞功能失调的桥梁。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Advanced glycation end-products accelerate amyloid deposits in adipocyte's lipid droplets.

Adipose tissue dysfunction is central to insulin resistance, and the emergence of type 2 diabetes (T2D) is associated with elevated levels of carbonyl metabolites from glucose metabolism. In this study, using methylglyoxal (MGO) and glycolaldehyde (GAD) carbonyl metabolites induced protein glycation, leading to misfolding and β-sheet formation and generation of advanced glycation end products (AGEs). The formed AGEs compromise adipocytes activity. Microscopic and spectroscopic assays were used to examine the impact of MGO and GAD on lipid droplet-associated proteins. The results provide information about how these conditions lead to the appearance of glycated and amyloidogenic proteins formation that hinders metabolism and autophagy in adipocytes. We measured the beneficial effects of metformin (MET), an anti-diabetic drug, on misfolded protein as assessed by thioflavin (ThT) spectroscopy and improved autophagy, determined by LC3 staining. In vitro findings were complemented by in vivo analysis of white adipose tissue (WAT), where lipid droplet-associated β-amyloid deposits were predominantly linked to adipose triglyceride lipase (ATGL), a lipid droplet protein. Bioinformatics, imaging, biochemical and MS/MS methods affirm ATGL's glycation and its role in β-sheet secondary structure formation. Our results highlighted the pronounced presence of amyloidogenic proteins in adipocytes treated with carbonyl compounds, potentially reshaping our understanding of adipocyte altered activity in the context of T2D. This in-depth exploration offers novel perspectives on related pathophysiology and underscores the potential of adipocytes as pivotal therapeutic targets, bridging T2D, amyloidosis, protein glycation, and adipocyte malfunction.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cell Death & Disease
Cell Death & Disease CELL BIOLOGY-
CiteScore
15.10
自引率
2.20%
发文量
935
审稿时长
2 months
期刊介绍: Brought to readers by the editorial team of Cell Death & Differentiation, Cell Death & Disease is an online peer-reviewed journal specializing in translational cell death research. It covers a wide range of topics in experimental and internal medicine, including cancer, immunity, neuroscience, and now cancer metabolism. Cell Death & Disease seeks to encompass the breadth of translational implications of cell death, and topics of particular concentration will include, but are not limited to, the following: Experimental medicine Cancer Immunity Internal medicine Neuroscience Cancer metabolism
期刊最新文献
RON receptor tyrosine kinase as a critical determinant in promoting tumorigenic behaviors of bladder cancer cells through regulating MMP12 and HIF-2α pathways. Advanced glycation end-products accelerate amyloid deposits in adipocyte's lipid droplets. Interaction of p53 with the Δ133p53α and Δ160p53α isoforms regulates p53 conformation and transcriptional activity. Synthetic rescue of Xeroderma Pigmentosum C phenotype via PIK3C3 downregulation. Correction: Maintenance of magnesium homeostasis by NUF2 promotes protein synthesis and anaplastic thyroid cancer progression.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1