为什么是 HPV16?为什么现在又是 HPV42?在罕见癌症中发现 HPV42 如何提供了一个机会,挑战我们对健康微生物群常见成员在健康与疾病之间转变的理解。

IF 10.1 2区 生物学 Q1 MICROBIOLOGY FEMS microbiology reviews Pub Date : 2024-11-19 DOI:10.1093/femsre/fuae029
Ignacio G Bravo, Sophia Belkhir, Philippe Paget-Bailly
{"title":"为什么是 HPV16?为什么现在又是 HPV42?在罕见癌症中发现 HPV42 如何提供了一个机会,挑战我们对健康微生物群常见成员在健康与疾病之间转变的理解。","authors":"Ignacio G Bravo, Sophia Belkhir, Philippe Paget-Bailly","doi":"10.1093/femsre/fuae029","DOIUrl":null,"url":null,"abstract":"<p><p>In 2022, a bioinformatic, agnostic approach identified HPV42 as causative agent of a rare cancer, later confirmed experimentally. This unexpected association offers an opportunity to reconsider our understanding about papillomavirus infections and cancers. We have expanded our knowledge about the diversity of papillomaviruses and the diseases they cause.Yet we still lack answers to fundamental questions, such as what makes HPV16 different from the closely related HPV31 or HPV33; or why the very divergent HPV13 and HPV32 cause focal epithelial hyperplasia, while HPV6 or HPV42 do not, despite their evolutionary relatedness. Certain members of the healthy skin microbiota are associated to rare clinical conditions. We propose that a focus on cellular phenotypes, most often transient and influenced by intrinsic and extrinsic factors, may help understand the continuum between health and disease. A conceptual switch is required towards an interpretation of biology as a diversity of states connected by transition probabilities, rather than quasi-deterministic programs. Under this perspective, papillomaviruses may only trigger malignant transformation when specific viral genotypes interact with precise cellular states. Drawing on Canguilhem's concepts of normal and pathological, we suggest that understanding the transition between fluid cellular states can illuminate how commensal-like infections transition from benign to malignant.</p>","PeriodicalId":12201,"journal":{"name":"FEMS microbiology reviews","volume":" ","pages":""},"PeriodicalIF":10.1000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Why HPV16? Why, now, HPV42? How the discovery of HPV42 in rare cancers provides an opportunity to challenge our understanding about the transition between health and disease for common members of the healthy microbiota.\",\"authors\":\"Ignacio G Bravo, Sophia Belkhir, Philippe Paget-Bailly\",\"doi\":\"10.1093/femsre/fuae029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In 2022, a bioinformatic, agnostic approach identified HPV42 as causative agent of a rare cancer, later confirmed experimentally. This unexpected association offers an opportunity to reconsider our understanding about papillomavirus infections and cancers. We have expanded our knowledge about the diversity of papillomaviruses and the diseases they cause.Yet we still lack answers to fundamental questions, such as what makes HPV16 different from the closely related HPV31 or HPV33; or why the very divergent HPV13 and HPV32 cause focal epithelial hyperplasia, while HPV6 or HPV42 do not, despite their evolutionary relatedness. Certain members of the healthy skin microbiota are associated to rare clinical conditions. We propose that a focus on cellular phenotypes, most often transient and influenced by intrinsic and extrinsic factors, may help understand the continuum between health and disease. A conceptual switch is required towards an interpretation of biology as a diversity of states connected by transition probabilities, rather than quasi-deterministic programs. Under this perspective, papillomaviruses may only trigger malignant transformation when specific viral genotypes interact with precise cellular states. Drawing on Canguilhem's concepts of normal and pathological, we suggest that understanding the transition between fluid cellular states can illuminate how commensal-like infections transition from benign to malignant.</p>\",\"PeriodicalId\":12201,\"journal\":{\"name\":\"FEMS microbiology reviews\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":10.1000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"FEMS microbiology reviews\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/femsre/fuae029\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEMS microbiology reviews","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/femsre/fuae029","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

2022 年,一种生物信息学的不可知论方法发现,HPV42 是一种罕见癌症的致病因子,后经实验证实。这种意想不到的关联为我们重新考虑对乳头瘤病毒感染和癌症的认识提供了机会。我们对乳头状瘤病毒的多样性及其引发的疾病有了更多的了解。然而,我们对一些基本问题仍然缺乏答案,比如HPV16与近亲HPV31或HPV33的不同之处;或者为什么差异很大的HPV13和HPV32会引起局灶性上皮增生,而HPV6或HPV42不会,尽管它们在进化上有亲缘关系。健康皮肤微生物群的某些成员与罕见的临床症状有关。我们建议,关注细胞表型(通常是瞬时的,受内在和外在因素的影响)可能有助于理解健康与疾病之间的连续性。需要转换概念,将生物学解释为由过渡概率而非准确定性程序连接的多种状态。根据这一观点,乳头瘤病毒只有在特定的病毒基因型与精确的细胞状态相互作用时才可能引发恶性转化。借鉴坎吉尔姆(Canguilhem)关于正常与病理的概念,我们认为,理解流动细胞状态之间的转变可以阐明类似共生感染的病毒是如何从良性转变为恶性的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Why HPV16? Why, now, HPV42? How the discovery of HPV42 in rare cancers provides an opportunity to challenge our understanding about the transition between health and disease for common members of the healthy microbiota.

In 2022, a bioinformatic, agnostic approach identified HPV42 as causative agent of a rare cancer, later confirmed experimentally. This unexpected association offers an opportunity to reconsider our understanding about papillomavirus infections and cancers. We have expanded our knowledge about the diversity of papillomaviruses and the diseases they cause.Yet we still lack answers to fundamental questions, such as what makes HPV16 different from the closely related HPV31 or HPV33; or why the very divergent HPV13 and HPV32 cause focal epithelial hyperplasia, while HPV6 or HPV42 do not, despite their evolutionary relatedness. Certain members of the healthy skin microbiota are associated to rare clinical conditions. We propose that a focus on cellular phenotypes, most often transient and influenced by intrinsic and extrinsic factors, may help understand the continuum between health and disease. A conceptual switch is required towards an interpretation of biology as a diversity of states connected by transition probabilities, rather than quasi-deterministic programs. Under this perspective, papillomaviruses may only trigger malignant transformation when specific viral genotypes interact with precise cellular states. Drawing on Canguilhem's concepts of normal and pathological, we suggest that understanding the transition between fluid cellular states can illuminate how commensal-like infections transition from benign to malignant.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
FEMS microbiology reviews
FEMS microbiology reviews 生物-微生物学
CiteScore
17.50
自引率
0.90%
发文量
45
审稿时长
6-12 weeks
期刊介绍: Title: FEMS Microbiology Reviews Journal Focus: Publishes reviews covering all aspects of microbiology not recently surveyed Reviews topics of current interest Provides comprehensive, critical, and authoritative coverage Offers new perspectives and critical, detailed discussions of significant trends May contain speculative and selective elements Aimed at both specialists and general readers Reviews should be framed within the context of general microbiology and biology Submission Criteria: Manuscripts should not be unevaluated compilations of literature Lectures delivered at symposia must review the related field to be acceptable
期刊最新文献
Why HPV16? Why, now, HPV42? How the discovery of HPV42 in rare cancers provides an opportunity to challenge our understanding about the transition between health and disease for common members of the healthy microbiota. Key roles of two-component systems in intestinal signal sensing and virulence regulation in enterohemorrhagic Escherichia coli. The biochemical mechanisms of plastic biodegradation. Assembly of functional microbial ecosystems: from molecular circuits to communities. Unraveling the Genomic Diversity of the Pseudomonas putida Group: Exploring Taxonomy, Core Pangenome, and Antibiotic Resistance Mechanisms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1