改善核酸递送抗体体内表达的结构和序列工程方法。

IF 12.1 1区 医学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Molecular Therapy Pub Date : 2024-11-19 DOI:10.1016/j.ymthe.2024.11.030
Michaela Helble, Jacqueline Chu, Kaitlyn Flowers, Abigail R Trachtman, Alana Huynh, Amber Kim, Nicholas Shupin, Casey E Hojecki, Ebony N Gary, Shahlo Solieva, Elizabeth M Parzych, David B Weiner, Daniel W Kulp, Ami Patel
{"title":"改善核酸递送抗体体内表达的结构和序列工程方法。","authors":"Michaela Helble, Jacqueline Chu, Kaitlyn Flowers, Abigail R Trachtman, Alana Huynh, Amber Kim, Nicholas Shupin, Casey E Hojecki, Ebony N Gary, Shahlo Solieva, Elizabeth M Parzych, David B Weiner, Daniel W Kulp, Ami Patel","doi":"10.1016/j.ymthe.2024.11.030","DOIUrl":null,"url":null,"abstract":"<p><p>Monoclonal antibodies are an important class of biologics with over 160 FDA/EU approved drugs. A significant bottleneck to global accessibility of recombinant monoclonal antibodies stems from complexities related to their production, storage, and distribution. Recently, gene-encoded approaches such as mRNA, DNA or viral delivery have gained popularity, but ensuring biologically relevant levels of antibody expression in the host remains a critical issue. Using a synthetic DNA platform, we investigate the role of antibody structure and sequence toward in vivo expression. SARS-COV2 antibody 2196 was recently engineered as a DNA-encoded monoclonal antibody (DMAb-2196). Utilizing an immunoglobulin heavy and light chain \"chain-swap\" methodology, we interrogate features of DMAb-2196 that can modulate in vivo expression through rational design and structural modeling. Comparing these results to natural variation of antibody sequences resulted in development of an antibody frequency score that aids in the prediction of expression-improving mutations by leveraging antibody repertoire datasets. We demonstrate that a single amino acid mutation identified through this score increases in vivo expression up to 2-fold and that combinations of mutations can also enhance expression. This analysis has led to a generalized pipeline that can unlock the potential for in vivo delivery of therapeutic antibodies across many indications.</p>","PeriodicalId":19020,"journal":{"name":"Molecular Therapy","volume":" ","pages":""},"PeriodicalIF":12.1000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structure and Sequence Engineering Approaches to Improve In Vivo Expression of Nucleic Acid-Delivered Antibodies.\",\"authors\":\"Michaela Helble, Jacqueline Chu, Kaitlyn Flowers, Abigail R Trachtman, Alana Huynh, Amber Kim, Nicholas Shupin, Casey E Hojecki, Ebony N Gary, Shahlo Solieva, Elizabeth M Parzych, David B Weiner, Daniel W Kulp, Ami Patel\",\"doi\":\"10.1016/j.ymthe.2024.11.030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Monoclonal antibodies are an important class of biologics with over 160 FDA/EU approved drugs. A significant bottleneck to global accessibility of recombinant monoclonal antibodies stems from complexities related to their production, storage, and distribution. Recently, gene-encoded approaches such as mRNA, DNA or viral delivery have gained popularity, but ensuring biologically relevant levels of antibody expression in the host remains a critical issue. Using a synthetic DNA platform, we investigate the role of antibody structure and sequence toward in vivo expression. SARS-COV2 antibody 2196 was recently engineered as a DNA-encoded monoclonal antibody (DMAb-2196). Utilizing an immunoglobulin heavy and light chain \\\"chain-swap\\\" methodology, we interrogate features of DMAb-2196 that can modulate in vivo expression through rational design and structural modeling. Comparing these results to natural variation of antibody sequences resulted in development of an antibody frequency score that aids in the prediction of expression-improving mutations by leveraging antibody repertoire datasets. We demonstrate that a single amino acid mutation identified through this score increases in vivo expression up to 2-fold and that combinations of mutations can also enhance expression. This analysis has led to a generalized pipeline that can unlock the potential for in vivo delivery of therapeutic antibodies across many indications.</p>\",\"PeriodicalId\":19020,\"journal\":{\"name\":\"Molecular Therapy\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":12.1000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Therapy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ymthe.2024.11.030\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ymthe.2024.11.030","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

单克隆抗体是一类重要的生物制剂,美国食品和药物管理局(FDA)/欧盟共批准了 160 多种单克隆抗体药物。全球获得重组单克隆抗体的一个重要瓶颈是其生产、储存和销售的复杂性。最近,基因编码的方法(如 mRNA、DNA 或病毒递送)越来越受欢迎,但确保抗体在宿主体内的生物相关表达水平仍然是一个关键问题。利用合成 DNA 平台,我们研究了抗体结构和序列对体内表达的作用。SARS-COV2 抗体 2196 最近被设计成一种 DNA 编码的单克隆抗体(DMAb-2196)。利用免疫球蛋白重链和轻链 "换链 "的方法,我们通过合理的设计和结构建模研究了 DMAb-2196 可调节体内表达的特征。将这些结果与抗体序列的自然变异进行比较后,我们开发出了一种抗体频率评分,通过利用抗体库数据集来帮助预测可改善表达的突变。我们证明,通过该评分确定的单个氨基酸突变可将体内表达量提高 2 倍,突变组合也可提高表达量。通过这项分析,我们开发出了一种通用的管道,可以释放体内输送治疗性抗体的潜力,适用于多种适应症。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Structure and Sequence Engineering Approaches to Improve In Vivo Expression of Nucleic Acid-Delivered Antibodies.

Monoclonal antibodies are an important class of biologics with over 160 FDA/EU approved drugs. A significant bottleneck to global accessibility of recombinant monoclonal antibodies stems from complexities related to their production, storage, and distribution. Recently, gene-encoded approaches such as mRNA, DNA or viral delivery have gained popularity, but ensuring biologically relevant levels of antibody expression in the host remains a critical issue. Using a synthetic DNA platform, we investigate the role of antibody structure and sequence toward in vivo expression. SARS-COV2 antibody 2196 was recently engineered as a DNA-encoded monoclonal antibody (DMAb-2196). Utilizing an immunoglobulin heavy and light chain "chain-swap" methodology, we interrogate features of DMAb-2196 that can modulate in vivo expression through rational design and structural modeling. Comparing these results to natural variation of antibody sequences resulted in development of an antibody frequency score that aids in the prediction of expression-improving mutations by leveraging antibody repertoire datasets. We demonstrate that a single amino acid mutation identified through this score increases in vivo expression up to 2-fold and that combinations of mutations can also enhance expression. This analysis has led to a generalized pipeline that can unlock the potential for in vivo delivery of therapeutic antibodies across many indications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Therapy
Molecular Therapy 医学-生物工程与应用微生物
CiteScore
19.20
自引率
3.20%
发文量
357
审稿时长
3 months
期刊介绍: Molecular Therapy is the leading journal for research in gene transfer, vector development, stem cell manipulation, and therapeutic interventions. It covers a broad spectrum of topics including genetic and acquired disease correction, vaccine development, pre-clinical validation, safety/efficacy studies, and clinical trials. With a focus on advancing genetics, medicine, and biotechnology, Molecular Therapy publishes peer-reviewed research, reviews, and commentaries to showcase the latest advancements in the field. With an impressive impact factor of 12.4 in 2022, it continues to attract top-tier contributions.
期刊最新文献
ARI0003: Co-transduced CD19/BCMA Dual-targeting CAR-T Cells for the Treatment of Non-Hodgkin Lymphoma. CRISPR targeting of mmu-miR-21a through a single adeno-associated virus vector prolongs survival of glioblastoma-bearing mice. Dorsal root ganglion toxicity after AAV intra-CSF delivery of a RNAi expression construct into nonhuman primates and mice. Lipid Nanoparticle Delivery of TALEN mRNA Targeting LPA Causes Gene Disruption and Plasma Lipoprotein(a) Reduction in Transgenic Mice. Longitudinal imaging of therapeutic enzyme expression after gene therapy for Fabry disease using Positron Emission Tomography and the radiotracer [18F]AGAL.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1