Noelia Silva-Pilipich, Uxue Beloki, Patricia Apaolaza, Ana Igea, Laura Salaberry, Laura Prats-Mari, Eric Rovira, Marina Ondiviela, Marta Gorraiz, Juan José Lasarte, Lucía Vanrell, Cristian Smerdou
{"title":"用小格式免疫细胞因子靶向 PD-1+ T 细胞可增强 IL-12 的抗肿瘤活性。","authors":"Noelia Silva-Pilipich, Uxue Beloki, Patricia Apaolaza, Ana Igea, Laura Salaberry, Laura Prats-Mari, Eric Rovira, Marina Ondiviela, Marta Gorraiz, Juan José Lasarte, Lucía Vanrell, Cristian Smerdou","doi":"10.1016/j.ymthe.2024.11.027","DOIUrl":null,"url":null,"abstract":"<p><p>Immunostimulatory cytokines and immune checkpoint inhibitors hold promise as cancer therapeutics; however, their use is often limited by reduced efficacy and significant toxicity. In this study, we developed small-format immunocytokines (ICKs) based on interleukin-12 (IL-12) and blocking nanobodies targeting mouse and human PD-1 and PD-L1. Both PD-1 and PD-L1-targeted ICKs demonstrated similar in vitro performance, significantly increasing IL-12 tethering to immune cells and enhancing T cell cytotoxic activity compared to IL-12 alone. Antitumor efficacy of ICKs was evaluated by intratumoral delivery using self-amplifying RNA-based vectors or as recombinant proteins in mice. Despite effective PD-L1-mediated tumor anchoring and promising in vitro results, IL-12 antitumor activity was significantly enhanced only when specific targeting to intratumoral T cells was achieved via anti-PD-1 nanobody. This effect was also observed when the PD-1 specific ICK was delivered by electroporation of a DNA/RNA layered vector. Our findings suggest that targeting the appropriate type of cell within the tumor microenvironment could outperform tumor-anchoring strategies in the context of IL-12 therapy. Human versions of these ICKs were also developed, which showed to be active in human immune cells, opening an opportunity for clinical translation.</p>","PeriodicalId":19020,"journal":{"name":"Molecular Therapy","volume":" ","pages":""},"PeriodicalIF":12.1000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Targeting PD-1<sup>+</sup> T cells with small-format immunocytokines enhances IL-12 antitumor activity.\",\"authors\":\"Noelia Silva-Pilipich, Uxue Beloki, Patricia Apaolaza, Ana Igea, Laura Salaberry, Laura Prats-Mari, Eric Rovira, Marina Ondiviela, Marta Gorraiz, Juan José Lasarte, Lucía Vanrell, Cristian Smerdou\",\"doi\":\"10.1016/j.ymthe.2024.11.027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Immunostimulatory cytokines and immune checkpoint inhibitors hold promise as cancer therapeutics; however, their use is often limited by reduced efficacy and significant toxicity. In this study, we developed small-format immunocytokines (ICKs) based on interleukin-12 (IL-12) and blocking nanobodies targeting mouse and human PD-1 and PD-L1. Both PD-1 and PD-L1-targeted ICKs demonstrated similar in vitro performance, significantly increasing IL-12 tethering to immune cells and enhancing T cell cytotoxic activity compared to IL-12 alone. Antitumor efficacy of ICKs was evaluated by intratumoral delivery using self-amplifying RNA-based vectors or as recombinant proteins in mice. Despite effective PD-L1-mediated tumor anchoring and promising in vitro results, IL-12 antitumor activity was significantly enhanced only when specific targeting to intratumoral T cells was achieved via anti-PD-1 nanobody. This effect was also observed when the PD-1 specific ICK was delivered by electroporation of a DNA/RNA layered vector. Our findings suggest that targeting the appropriate type of cell within the tumor microenvironment could outperform tumor-anchoring strategies in the context of IL-12 therapy. Human versions of these ICKs were also developed, which showed to be active in human immune cells, opening an opportunity for clinical translation.</p>\",\"PeriodicalId\":19020,\"journal\":{\"name\":\"Molecular Therapy\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":12.1000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Therapy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ymthe.2024.11.027\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ymthe.2024.11.027","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Targeting PD-1+ T cells with small-format immunocytokines enhances IL-12 antitumor activity.
Immunostimulatory cytokines and immune checkpoint inhibitors hold promise as cancer therapeutics; however, their use is often limited by reduced efficacy and significant toxicity. In this study, we developed small-format immunocytokines (ICKs) based on interleukin-12 (IL-12) and blocking nanobodies targeting mouse and human PD-1 and PD-L1. Both PD-1 and PD-L1-targeted ICKs demonstrated similar in vitro performance, significantly increasing IL-12 tethering to immune cells and enhancing T cell cytotoxic activity compared to IL-12 alone. Antitumor efficacy of ICKs was evaluated by intratumoral delivery using self-amplifying RNA-based vectors or as recombinant proteins in mice. Despite effective PD-L1-mediated tumor anchoring and promising in vitro results, IL-12 antitumor activity was significantly enhanced only when specific targeting to intratumoral T cells was achieved via anti-PD-1 nanobody. This effect was also observed when the PD-1 specific ICK was delivered by electroporation of a DNA/RNA layered vector. Our findings suggest that targeting the appropriate type of cell within the tumor microenvironment could outperform tumor-anchoring strategies in the context of IL-12 therapy. Human versions of these ICKs were also developed, which showed to be active in human immune cells, opening an opportunity for clinical translation.
期刊介绍:
Molecular Therapy is the leading journal for research in gene transfer, vector development, stem cell manipulation, and therapeutic interventions. It covers a broad spectrum of topics including genetic and acquired disease correction, vaccine development, pre-clinical validation, safety/efficacy studies, and clinical trials. With a focus on advancing genetics, medicine, and biotechnology, Molecular Therapy publishes peer-reviewed research, reviews, and commentaries to showcase the latest advancements in the field. With an impressive impact factor of 12.4 in 2022, it continues to attract top-tier contributions.