Beren Millidge, Yuhang Song, Armin Lak, Mark E Walton, Rafal Bogacz
{"title":"奖励基地:适应性获取多种奖励类型的简单机制。","authors":"Beren Millidge, Yuhang Song, Armin Lak, Mark E Walton, Rafal Bogacz","doi":"10.1371/journal.pcbi.1012580","DOIUrl":null,"url":null,"abstract":"<p><p>Animals can adapt their preferences for different types of reward according to physiological state, such as hunger or thirst. To explain this ability, we employ a simple multi-objective reinforcement learning model that learns multiple values according to different reward dimensions such as food or water. We show that by weighting these learned values according to the current needs, behaviour may be flexibly adapted to present preferences. This model predicts that individual dopamine neurons should encode the errors associated with some reward dimensions more than with others. To provide a preliminary test of this prediction, we reanalysed a small dataset obtained from a single primate in an experiment which to our knowledge is the only published study where the responses of dopamine neurons to stimuli predicting distinct types of rewards were recorded. We observed that in addition to subjective economic value, dopamine neurons encode a gradient of reward dimensions; some neurons respond most to stimuli predicting food rewards while the others respond more to stimuli predicting fluids. We also proposed a possible implementation of the model in the basal ganglia network, and demonstrated how the striatal system can learn values in multiple dimensions, even when dopamine neurons encode mixtures of prediction error from different dimensions. Additionally, the model reproduces the instant generalisation to new physiological states seen in dopamine responses and in behaviour. Our results demonstrate how a simple neural circuit can flexibly guide behaviour according to animals' needs.</p>","PeriodicalId":20241,"journal":{"name":"PLoS Computational Biology","volume":"20 11","pages":"e1012580"},"PeriodicalIF":3.8000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reward Bases: A simple mechanism for adaptive acquisition of multiple reward types.\",\"authors\":\"Beren Millidge, Yuhang Song, Armin Lak, Mark E Walton, Rafal Bogacz\",\"doi\":\"10.1371/journal.pcbi.1012580\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Animals can adapt their preferences for different types of reward according to physiological state, such as hunger or thirst. To explain this ability, we employ a simple multi-objective reinforcement learning model that learns multiple values according to different reward dimensions such as food or water. We show that by weighting these learned values according to the current needs, behaviour may be flexibly adapted to present preferences. This model predicts that individual dopamine neurons should encode the errors associated with some reward dimensions more than with others. To provide a preliminary test of this prediction, we reanalysed a small dataset obtained from a single primate in an experiment which to our knowledge is the only published study where the responses of dopamine neurons to stimuli predicting distinct types of rewards were recorded. We observed that in addition to subjective economic value, dopamine neurons encode a gradient of reward dimensions; some neurons respond most to stimuli predicting food rewards while the others respond more to stimuli predicting fluids. We also proposed a possible implementation of the model in the basal ganglia network, and demonstrated how the striatal system can learn values in multiple dimensions, even when dopamine neurons encode mixtures of prediction error from different dimensions. Additionally, the model reproduces the instant generalisation to new physiological states seen in dopamine responses and in behaviour. Our results demonstrate how a simple neural circuit can flexibly guide behaviour according to animals' needs.</p>\",\"PeriodicalId\":20241,\"journal\":{\"name\":\"PLoS Computational Biology\",\"volume\":\"20 11\",\"pages\":\"e1012580\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLoS Computational Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.pcbi.1012580\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pcbi.1012580","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Reward Bases: A simple mechanism for adaptive acquisition of multiple reward types.
Animals can adapt their preferences for different types of reward according to physiological state, such as hunger or thirst. To explain this ability, we employ a simple multi-objective reinforcement learning model that learns multiple values according to different reward dimensions such as food or water. We show that by weighting these learned values according to the current needs, behaviour may be flexibly adapted to present preferences. This model predicts that individual dopamine neurons should encode the errors associated with some reward dimensions more than with others. To provide a preliminary test of this prediction, we reanalysed a small dataset obtained from a single primate in an experiment which to our knowledge is the only published study where the responses of dopamine neurons to stimuli predicting distinct types of rewards were recorded. We observed that in addition to subjective economic value, dopamine neurons encode a gradient of reward dimensions; some neurons respond most to stimuli predicting food rewards while the others respond more to stimuli predicting fluids. We also proposed a possible implementation of the model in the basal ganglia network, and demonstrated how the striatal system can learn values in multiple dimensions, even when dopamine neurons encode mixtures of prediction error from different dimensions. Additionally, the model reproduces the instant generalisation to new physiological states seen in dopamine responses and in behaviour. Our results demonstrate how a simple neural circuit can flexibly guide behaviour according to animals' needs.
期刊介绍:
PLOS Computational Biology features works of exceptional significance that further our understanding of living systems at all scales—from molecules and cells, to patient populations and ecosystems—through the application of computational methods. Readers include life and computational scientists, who can take the important findings presented here to the next level of discovery.
Research articles must be declared as belonging to a relevant section. More information about the sections can be found in the submission guidelines.
Research articles should model aspects of biological systems, demonstrate both methodological and scientific novelty, and provide profound new biological insights.
Generally, reliability and significance of biological discovery through computation should be validated and enriched by experimental studies. Inclusion of experimental validation is not required for publication, but should be referenced where possible. Inclusion of experimental validation of a modest biological discovery through computation does not render a manuscript suitable for PLOS Computational Biology.
Research articles specifically designated as Methods papers should describe outstanding methods of exceptional importance that have been shown, or have the promise to provide new biological insights. The method must already be widely adopted, or have the promise of wide adoption by a broad community of users. Enhancements to existing published methods will only be considered if those enhancements bring exceptional new capabilities.