{"title":"使用面积和功耗适中的三元分选器对改进的最小-最大中值滤波器进行 VLSI 实现,用于图像去噪。","authors":"Chrishia Christudhas, Annis Fathima","doi":"10.1038/s41598-024-80053-6","DOIUrl":null,"url":null,"abstract":"<p><p>The prominence of image processing in today's cutting-edge technology is undeniable. Integrating software with hardware leverages both strengths, resulting in a real-time processing system that is efficient and streamlined. Raw images are usually affected by noise, which hinders the acquisition of good-quality and detailed images; hence, denoising becomes necessary. This paper proposes a modified min-max median (MMM) filter to remove impulse noise and a Tritonic sorter to localize corrupted pixels. The proposed denoising method focuses on localizing noisy pixels, unlike traditional denoising approaches, which focus only on noise detection and filtering. A min-max sheet provides the location of the corrupted pixels, and filtering is performed on them. The Tritonic Sorter, consisting of a max locator and a min locator, compares three input values and finds the minimum, maximum and median values among them. Compared to other state-of-the-art methods, the proposed method minimizes the number of comparators needed to carry out the sorting process. The proposed method was synthesized in the ZedBoard Zynq kit using the Vivado tool. The results show that the area improved by 27%, and the power improved by 16.23% compared with those of the existing method.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"14 1","pages":"28628"},"PeriodicalIF":3.8000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"VLSI implementation of a modified min-max median filter using an area and power competent tritonic sorter for image denoising.\",\"authors\":\"Chrishia Christudhas, Annis Fathima\",\"doi\":\"10.1038/s41598-024-80053-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The prominence of image processing in today's cutting-edge technology is undeniable. Integrating software with hardware leverages both strengths, resulting in a real-time processing system that is efficient and streamlined. Raw images are usually affected by noise, which hinders the acquisition of good-quality and detailed images; hence, denoising becomes necessary. This paper proposes a modified min-max median (MMM) filter to remove impulse noise and a Tritonic sorter to localize corrupted pixels. The proposed denoising method focuses on localizing noisy pixels, unlike traditional denoising approaches, which focus only on noise detection and filtering. A min-max sheet provides the location of the corrupted pixels, and filtering is performed on them. The Tritonic Sorter, consisting of a max locator and a min locator, compares three input values and finds the minimum, maximum and median values among them. Compared to other state-of-the-art methods, the proposed method minimizes the number of comparators needed to carry out the sorting process. The proposed method was synthesized in the ZedBoard Zynq kit using the Vivado tool. The results show that the area improved by 27%, and the power improved by 16.23% compared with those of the existing method.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"14 1\",\"pages\":\"28628\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-024-80053-6\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-024-80053-6","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
VLSI implementation of a modified min-max median filter using an area and power competent tritonic sorter for image denoising.
The prominence of image processing in today's cutting-edge technology is undeniable. Integrating software with hardware leverages both strengths, resulting in a real-time processing system that is efficient and streamlined. Raw images are usually affected by noise, which hinders the acquisition of good-quality and detailed images; hence, denoising becomes necessary. This paper proposes a modified min-max median (MMM) filter to remove impulse noise and a Tritonic sorter to localize corrupted pixels. The proposed denoising method focuses on localizing noisy pixels, unlike traditional denoising approaches, which focus only on noise detection and filtering. A min-max sheet provides the location of the corrupted pixels, and filtering is performed on them. The Tritonic Sorter, consisting of a max locator and a min locator, compares three input values and finds the minimum, maximum and median values among them. Compared to other state-of-the-art methods, the proposed method minimizes the number of comparators needed to carry out the sorting process. The proposed method was synthesized in the ZedBoard Zynq kit using the Vivado tool. The results show that the area improved by 27%, and the power improved by 16.23% compared with those of the existing method.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.