{"title":"感染后死亡率的演变。","authors":"Chadi M Saad-Roy, Andy White, Mike Boots","doi":"10.1098/rspb.2024.1854","DOIUrl":null,"url":null,"abstract":"<p><p>COVID-19 infections have underlined that there can be substantial impacts on health after recovery, including elevated mortality. While such post-infection mortality (PIM) is clearly widespread, we do not yet have any understanding of its evolutionary dynamics. To address this gap, we use an eco-evolutionary model to determine conditions where PIM is evolutionarily favoured. Importantly, from a pathogen perspective, there are two potential 'resources': never-infected susceptibles and previously infected susceptibles (provided some reinfection is possible), and PIM only occurs in the latter. A key insight is that unlike classic virulence (i.e. during-infection mortality, DIM) PIM is neutral and not selected against in the absence of other trade-offs. However, PIM modulates characteristics of endemicity, and may also vary with other pathogen-specific components. If PIM is only correlated with transmission, recovery or DIM, it simply acts to modulate their impacts on the evolutionary outcome. On the other hand, if PIM trades off with the relative susceptibility to reinfection, there are important evolutionary implications that contrast with DIM. We find settings where a susceptibility-mortality trade-off (i.e. an increase in mortality leads to higher relative susceptibility to reinfection) can select against DIM but favour PIM. This provides a potential explanation for the ubiquity of PIM. Overall, our work illustrates that PIM can readily evolve in certain settings and highlights the importance of considering different sources of mortality.</p>","PeriodicalId":20589,"journal":{"name":"Proceedings of the Royal Society B: Biological Sciences","volume":"291 2035","pages":"20241854"},"PeriodicalIF":3.8000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11576100/pdf/","citationCount":"0","resultStr":"{\"title\":\"The evolution of post-infection mortality.\",\"authors\":\"Chadi M Saad-Roy, Andy White, Mike Boots\",\"doi\":\"10.1098/rspb.2024.1854\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>COVID-19 infections have underlined that there can be substantial impacts on health after recovery, including elevated mortality. While such post-infection mortality (PIM) is clearly widespread, we do not yet have any understanding of its evolutionary dynamics. To address this gap, we use an eco-evolutionary model to determine conditions where PIM is evolutionarily favoured. Importantly, from a pathogen perspective, there are two potential 'resources': never-infected susceptibles and previously infected susceptibles (provided some reinfection is possible), and PIM only occurs in the latter. A key insight is that unlike classic virulence (i.e. during-infection mortality, DIM) PIM is neutral and not selected against in the absence of other trade-offs. However, PIM modulates characteristics of endemicity, and may also vary with other pathogen-specific components. If PIM is only correlated with transmission, recovery or DIM, it simply acts to modulate their impacts on the evolutionary outcome. On the other hand, if PIM trades off with the relative susceptibility to reinfection, there are important evolutionary implications that contrast with DIM. We find settings where a susceptibility-mortality trade-off (i.e. an increase in mortality leads to higher relative susceptibility to reinfection) can select against DIM but favour PIM. This provides a potential explanation for the ubiquity of PIM. Overall, our work illustrates that PIM can readily evolve in certain settings and highlights the importance of considering different sources of mortality.</p>\",\"PeriodicalId\":20589,\"journal\":{\"name\":\"Proceedings of the Royal Society B: Biological Sciences\",\"volume\":\"291 2035\",\"pages\":\"20241854\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11576100/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Royal Society B: Biological Sciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1098/rspb.2024.1854\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society B: Biological Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1098/rspb.2024.1854","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/20 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
COVID-19 infections have underlined that there can be substantial impacts on health after recovery, including elevated mortality. While such post-infection mortality (PIM) is clearly widespread, we do not yet have any understanding of its evolutionary dynamics. To address this gap, we use an eco-evolutionary model to determine conditions where PIM is evolutionarily favoured. Importantly, from a pathogen perspective, there are two potential 'resources': never-infected susceptibles and previously infected susceptibles (provided some reinfection is possible), and PIM only occurs in the latter. A key insight is that unlike classic virulence (i.e. during-infection mortality, DIM) PIM is neutral and not selected against in the absence of other trade-offs. However, PIM modulates characteristics of endemicity, and may also vary with other pathogen-specific components. If PIM is only correlated with transmission, recovery or DIM, it simply acts to modulate their impacts on the evolutionary outcome. On the other hand, if PIM trades off with the relative susceptibility to reinfection, there are important evolutionary implications that contrast with DIM. We find settings where a susceptibility-mortality trade-off (i.e. an increase in mortality leads to higher relative susceptibility to reinfection) can select against DIM but favour PIM. This provides a potential explanation for the ubiquity of PIM. Overall, our work illustrates that PIM can readily evolve in certain settings and highlights the importance of considering different sources of mortality.
期刊介绍:
Proceedings B is the Royal Society’s flagship biological research journal, accepting original articles and reviews of outstanding scientific importance and broad general interest. The main criteria for acceptance are that a study is novel, and has general significance to biologists. Articles published cover a wide range of areas within the biological sciences, many have relevance to organisms and the environments in which they live. The scope includes, but is not limited to, ecology, evolution, behavior, health and disease epidemiology, neuroscience and cognition, behavioral genetics, development, biomechanics, paleontology, comparative biology, molecular ecology and evolution, and global change biology.