中美合作进行的人工智能研究更具影响力。

IF 3.8 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Scientific Reports Pub Date : 2024-11-19 DOI:10.1038/s41598-024-79863-5
Bedoor AlShebli, Shahan Ali Memon, James A Evans, Talal Rahwan
{"title":"中美合作进行的人工智能研究更具影响力。","authors":"Bedoor AlShebli, Shahan Ali Memon, James A Evans, Talal Rahwan","doi":"10.1038/s41598-024-79863-5","DOIUrl":null,"url":null,"abstract":"<p><p>Artificial Intelligence (AI) has become a disruptive technology, promising to grant a significant economic and strategic advantage to nations that harness its power. China, with its recent push towards AI adoption, is challenging the U.S.'s position as the global leader in this field. Given AI's massive potential, as well as the fierce geopolitical tensions between China and the U.S., several recent policies have been put in place to discourage AI scientists from migrating to, or collaborating with, the other nation. Nevertheless, the extent of talent migration and cross-border collaboration are not fully understood. Here, we analyze a dataset of over 350,000 AI scientists and 5,000,000 AI papers. We find that since 2000, China and the U.S. have led the field in terms of impact, novelty, productivity, and workforce. Most AI scientists who move to China come from the U.S., and most who move to the U.S. come from China, highlighting a notable bidirectional talent migration. Moreover, the vast majority of those moving in either direction have Asian ancestry. Upon moving, those scientists continue to collaborate frequently with those in the origin country. Although the number of collaborations between the two countries has increased since the dawn of the millennium, such collaborations continue to be relatively rare. A matching experiment reveals that the two countries have always been more impactful when collaborating than when each works without the other. These findings suggest that instead of suppressing cross-border migration and collaboration between the two nations, the science could benefit from promoting such activities.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"14 1","pages":"28576"},"PeriodicalIF":3.8000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"China and the U.S. produce more impactful AI research when collaborating together.\",\"authors\":\"Bedoor AlShebli, Shahan Ali Memon, James A Evans, Talal Rahwan\",\"doi\":\"10.1038/s41598-024-79863-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Artificial Intelligence (AI) has become a disruptive technology, promising to grant a significant economic and strategic advantage to nations that harness its power. China, with its recent push towards AI adoption, is challenging the U.S.'s position as the global leader in this field. Given AI's massive potential, as well as the fierce geopolitical tensions between China and the U.S., several recent policies have been put in place to discourage AI scientists from migrating to, or collaborating with, the other nation. Nevertheless, the extent of talent migration and cross-border collaboration are not fully understood. Here, we analyze a dataset of over 350,000 AI scientists and 5,000,000 AI papers. We find that since 2000, China and the U.S. have led the field in terms of impact, novelty, productivity, and workforce. Most AI scientists who move to China come from the U.S., and most who move to the U.S. come from China, highlighting a notable bidirectional talent migration. Moreover, the vast majority of those moving in either direction have Asian ancestry. Upon moving, those scientists continue to collaborate frequently with those in the origin country. Although the number of collaborations between the two countries has increased since the dawn of the millennium, such collaborations continue to be relatively rare. A matching experiment reveals that the two countries have always been more impactful when collaborating than when each works without the other. These findings suggest that instead of suppressing cross-border migration and collaboration between the two nations, the science could benefit from promoting such activities.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"14 1\",\"pages\":\"28576\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-024-79863-5\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-024-79863-5","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

人工智能(AI)已成为一种颠覆性技术,有望为利用其力量的国家带来巨大的经济和战略优势。中国最近大力推动人工智能的应用,正在挑战美国作为该领域全球领导者的地位。考虑到人工智能的巨大潜力,以及中美之间激烈的地缘政治紧张局势,中国最近出台了多项政策,阻止人工智能科学家移民到对方国家或与对方国家合作。然而,人们对人才移民和跨境合作的程度并不完全了解。在这里,我们分析了超过 35 万名人工智能科学家和 500 万篇人工智能论文的数据集。我们发现,自 2000 年以来,中国和美国在该领域的影响力、新颖性、生产力和劳动力方面都处于领先地位。大多数移居中国的人工智能科学家来自美国,而大多数移居美国的人工智能科学家来自中国,这凸显了显著的双向人才流动。此外,在这两个方向的迁徙中,绝大多数都有亚裔血统。这些科学家在迁往美国后,继续与原籍国的科学家频繁合作。虽然两国之间的合作数量自千禧年以来有所增加,但这种合作仍然相对罕见。一项配对实验显示,两国在合作时的影响力总是大于各自单独工作时的影响力。这些研究结果表明,与其压制两国间的跨境移民与合作,不如促进此类活动,从而使科学受益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
China and the U.S. produce more impactful AI research when collaborating together.

Artificial Intelligence (AI) has become a disruptive technology, promising to grant a significant economic and strategic advantage to nations that harness its power. China, with its recent push towards AI adoption, is challenging the U.S.'s position as the global leader in this field. Given AI's massive potential, as well as the fierce geopolitical tensions between China and the U.S., several recent policies have been put in place to discourage AI scientists from migrating to, or collaborating with, the other nation. Nevertheless, the extent of talent migration and cross-border collaboration are not fully understood. Here, we analyze a dataset of over 350,000 AI scientists and 5,000,000 AI papers. We find that since 2000, China and the U.S. have led the field in terms of impact, novelty, productivity, and workforce. Most AI scientists who move to China come from the U.S., and most who move to the U.S. come from China, highlighting a notable bidirectional talent migration. Moreover, the vast majority of those moving in either direction have Asian ancestry. Upon moving, those scientists continue to collaborate frequently with those in the origin country. Although the number of collaborations between the two countries has increased since the dawn of the millennium, such collaborations continue to be relatively rare. A matching experiment reveals that the two countries have always been more impactful when collaborating than when each works without the other. These findings suggest that instead of suppressing cross-border migration and collaboration between the two nations, the science could benefit from promoting such activities.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Scientific Reports
Scientific Reports Natural Science Disciplines-
CiteScore
7.50
自引率
4.30%
发文量
19567
审稿时长
3.9 months
期刊介绍: We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections. Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021). •Engineering Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live. •Physical sciences Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics. •Earth and environmental sciences Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems. •Biological sciences Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants. •Health sciences The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.
期刊最新文献
Truncating the C terminus of formate dehydrogenase leads to improved preference to nicotinamide cytosine dinucleotide. Analysis of damaging non-synonymous SNPs in GPx1 gene associated with the progression of diverse cancers through a comprehensive in silico approach. Assessment of urine calprotectin and YKL-40 levels in urinary tract infection diagnosis in children under 2 years of age. CD38 modulates cytokine secretion by NK cells through the Sirt1/NF-κB pathway, suppressing immune surveillance in colorectal cancer. Design and implementation of an inductor based cell balancing circuit with reduced switches for Lithium-ion batteries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1