棕色鼹鼠成年雌性生殖道亚区的基因表达谱分析。

IF 3.7 3区 生物学 Q1 DEVELOPMENTAL BIOLOGY Reproduction Pub Date : 2024-11-01 DOI:10.1530/REP-24-0062
Bonnie K Kircher, Bin Liu, Matthew D Bramble, Malcolm M Moses, Richard R Behringer
{"title":"棕色鼹鼠成年雌性生殖道亚区的基因表达谱分析。","authors":"Bonnie K Kircher, Bin Liu, Matthew D Bramble, Malcolm M Moses, Richard R Behringer","doi":"10.1530/REP-24-0062","DOIUrl":null,"url":null,"abstract":"<p><p>The morphological diversity and functional role of the organs of the female reproductive system across tetrapods (limbed vertebrates) are relatively poorly understood. Though some features are morphologically similar, species-specific modification makes comparisons between species and inference about evolutionary origins challenging. In combination with the study of morphological changes, studying differences in gene expression in the adult reproductive system in diverse species can clarify the function of each organ. Here, we use the brown anole, Anolis sagrei, to study gene expression differences within the reproductive tract of the adult female. We generated gene expression profiles of four biological replicates of the three regions of the female reproductive tract, the infundibulum, glandular uterus, and nonglandular uterus by RNA-sequencing. We aligned read to the recently published Anolis sagrei genome and identified significantly differentially expressed genes between the regions using DEseq2. Each organ expressed approximately 14600 genes and comparison of gene expression profiles between organs revealed between 367-883 differentially expressed genes. We identify shared and region-specific transcriptional signatures for the three regions and compare gene expression in the brown anole reproductive tract to known gene expression patterns in other tetrapods. We find that genes in the Hox cluster have an anterior-posterior, colinear expression pattern as has been described in mammals. We also define a secretome for the glandular uterus. These data provide fundamental information for functional studies of the reproductive tract organs in the brown anole as well as an important phylogenetic anchor for comparative study of the evolution of the female reproductive tract.</p>","PeriodicalId":21127,"journal":{"name":"Reproduction","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gene expression profile analysis of subregions of the adult female reproductive tract in the brown anole, Anolis sagrei.\",\"authors\":\"Bonnie K Kircher, Bin Liu, Matthew D Bramble, Malcolm M Moses, Richard R Behringer\",\"doi\":\"10.1530/REP-24-0062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The morphological diversity and functional role of the organs of the female reproductive system across tetrapods (limbed vertebrates) are relatively poorly understood. Though some features are morphologically similar, species-specific modification makes comparisons between species and inference about evolutionary origins challenging. In combination with the study of morphological changes, studying differences in gene expression in the adult reproductive system in diverse species can clarify the function of each organ. Here, we use the brown anole, Anolis sagrei, to study gene expression differences within the reproductive tract of the adult female. We generated gene expression profiles of four biological replicates of the three regions of the female reproductive tract, the infundibulum, glandular uterus, and nonglandular uterus by RNA-sequencing. We aligned read to the recently published Anolis sagrei genome and identified significantly differentially expressed genes between the regions using DEseq2. Each organ expressed approximately 14600 genes and comparison of gene expression profiles between organs revealed between 367-883 differentially expressed genes. We identify shared and region-specific transcriptional signatures for the three regions and compare gene expression in the brown anole reproductive tract to known gene expression patterns in other tetrapods. We find that genes in the Hox cluster have an anterior-posterior, colinear expression pattern as has been described in mammals. We also define a secretome for the glandular uterus. These data provide fundamental information for functional studies of the reproductive tract organs in the brown anole as well as an important phylogenetic anchor for comparative study of the evolution of the female reproductive tract.</p>\",\"PeriodicalId\":21127,\"journal\":{\"name\":\"Reproduction\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reproduction\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1530/REP-24-0062\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"DEVELOPMENTAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reproduction","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1530/REP-24-0062","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

人们对四足类(有肢脊椎动物)雌性生殖系统器官的形态多样性和功能作用的了解相对较少。虽然某些特征在形态上相似,但物种特有的改变使得物种间的比较和进化起源的推断具有挑战性。在研究形态变化的同时,研究不同物种成体生殖系统基因表达的差异可以阐明每个器官的功能。在这里,我们利用褐马鸡(Anolis sagrei)来研究成年雌性动物生殖道内的基因表达差异。我们通过RNA测序生成了雌性生殖道三个区域(子宫内膜、腺子宫和非腺子宫)的四个生物重复的基因表达谱。我们将读数与最近发表的 Anolis sagrei 基因组进行了比对,并使用 DEseq2 鉴定了各区域之间显著差异表达的基因。每个器官表达了大约 14600 个基因,比较器官之间的基因表达谱发现了 367-883 个差异表达基因。我们确定了这三个区域的共有转录特征和区域特异性转录特征,并将棕色 anole 生殖道的基因表达与其他四足动物的已知基因表达模式进行了比较。我们发现,Hox 群中的基因与哺乳动物中的基因表达模式一样,具有前后相关的表达模式。我们还定义了腺状子宫的分泌组。这些数据为棕色鼹鼠生殖道器官的功能研究提供了基础信息,也为雌性生殖道进化的比较研究提供了重要的系统发育基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Gene expression profile analysis of subregions of the adult female reproductive tract in the brown anole, Anolis sagrei.

The morphological diversity and functional role of the organs of the female reproductive system across tetrapods (limbed vertebrates) are relatively poorly understood. Though some features are morphologically similar, species-specific modification makes comparisons between species and inference about evolutionary origins challenging. In combination with the study of morphological changes, studying differences in gene expression in the adult reproductive system in diverse species can clarify the function of each organ. Here, we use the brown anole, Anolis sagrei, to study gene expression differences within the reproductive tract of the adult female. We generated gene expression profiles of four biological replicates of the three regions of the female reproductive tract, the infundibulum, glandular uterus, and nonglandular uterus by RNA-sequencing. We aligned read to the recently published Anolis sagrei genome and identified significantly differentially expressed genes between the regions using DEseq2. Each organ expressed approximately 14600 genes and comparison of gene expression profiles between organs revealed between 367-883 differentially expressed genes. We identify shared and region-specific transcriptional signatures for the three regions and compare gene expression in the brown anole reproductive tract to known gene expression patterns in other tetrapods. We find that genes in the Hox cluster have an anterior-posterior, colinear expression pattern as has been described in mammals. We also define a secretome for the glandular uterus. These data provide fundamental information for functional studies of the reproductive tract organs in the brown anole as well as an important phylogenetic anchor for comparative study of the evolution of the female reproductive tract.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Reproduction
Reproduction 生物-发育生物学
CiteScore
7.40
自引率
2.60%
发文量
199
审稿时长
4-8 weeks
期刊介绍: Reproduction is the official journal of the Society of Reproduction and Fertility (SRF). It was formed in 2001 when the Society merged its two journals, the Journal of Reproduction and Fertility and Reviews of Reproduction. Reproduction publishes original research articles and topical reviews on the subject of reproductive and developmental biology, and reproductive medicine. The journal will consider publication of high-quality meta-analyses; these should be submitted to the research papers category. The journal considers studies in humans and all animal species, and will publish clinical studies if they advance our understanding of the underlying causes and/or mechanisms of disease. Scientific excellence and broad interest to our readership are the most important criteria during the peer review process. The journal publishes articles that make a clear advance in the field, whether of mechanistic, descriptive or technical focus. Articles that substantiate new or controversial reports are welcomed if they are noteworthy and advance the field. Topics include, but are not limited to, reproductive immunology, reproductive toxicology, stem cells, environmental effects on reproductive potential and health (eg obesity), extracellular vesicles, fertility preservation and epigenetic effects on reproductive and developmental processes.
期刊最新文献
IMPACT OF REAL-LIFE ENVIRONMENTAL EXPOSURES ON REPRODUCTION: A contemporary review of machine learning to predict adverse pregnancy outcomes from pharmaceuticals, including DDIs. O-GlcNAc participates in the meiosis of aging oocytes by mediating mitochondrial function. REPRODUCTIVE HEALTH IN TRANS AND GENDER-DIVERSE PATIENTS: Trauma-informed reproductive care for transgender and nonbinary people. SON controls mouse early embryonic development by regulating RNA splicing and histone methylation. IMPACT OF REAL-LIFE ENVIRONMENTAL EXPOSURES ON REPRODUCTION: Systemic and ovarian impacts of heat stress in the porcine model.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1