Xin Li, Lidong Huang, Min Mao, Hong Xu, Caijun Liu, Yang Liu, Hanmin Liu
{"title":"来源于 HucMSCs 的外泌体通过 Wnt5a/ROCK1 轴促进早产儿的肺发育","authors":"Xin Li, Lidong Huang, Min Mao, Hong Xu, Caijun Liu, Yang Liu, Hanmin Liu","doi":"10.1007/s12015-024-10824-1","DOIUrl":null,"url":null,"abstract":"<p><p>Bronchopulmonary dysplasia (BPD) frequently affects extremely preterm and low birth weight infants, with current treatments lacking specificity. Enhancing extra-uterine preterm alveoli development and repairing damage are crucial for BPD management. Here we show that exosomes derived from human umbilical cord mesenchymal stem cells (hucMSCs-Exos) can enhance fetal lung development in mice by delivering specific contents. Briefly, hucMSCs-Exos were extracted using ultracentrifugation and identified by transmission electron microscopy (TEM), flow cytometry, Western blot (WB), and nanoparticle tracking analysis (NTA). These exosomes were then administered to pregnant mice via tail vein injection. Embryonic lung tissues were collected at E13.5 and E18.5 via cesarean section and analyzed using hematoxylin-eosin (HE) staining, immunofluorescence, and TEM. Proteomic analysis was conducted to identify protein components in the exosomes, and WB was used to assess protein expression changes. hucMSCs-Exos from full-term infants were more effective in promoting cell proliferation than those from preterm infants. In vivo, full-term hucMSCs-Exos significantly enhanced alveolarization in fetal lung tissues. Proteomic analysis revealed higher Wnt5a expression in full-term hucMSCs-Exos, and further experiments confirmed a direct interaction between Wnt5a and ROCK1. WB also showed increased expression of the autophagy marker LC3B in the lung tissues of mice treated with full-term exosomes. In conclusion, term hucMSCs-Exos may directly regulate the phosphorylation of ROCK1 in mouse lung tissue through naturally enriched Wnt5a, thus promoting autophagy of AT2 cells and lamellar body development, and ultimately enhance the alveolarization and reducing the incidence of BPD in premature infants.</p>","PeriodicalId":21955,"journal":{"name":"Stem Cell Reviews and Reports","volume":" ","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"HucMSCs-derived Exosomes Promote Lung Development in Premature Birth via Wnt5a/ROCK1 Axis.\",\"authors\":\"Xin Li, Lidong Huang, Min Mao, Hong Xu, Caijun Liu, Yang Liu, Hanmin Liu\",\"doi\":\"10.1007/s12015-024-10824-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Bronchopulmonary dysplasia (BPD) frequently affects extremely preterm and low birth weight infants, with current treatments lacking specificity. Enhancing extra-uterine preterm alveoli development and repairing damage are crucial for BPD management. Here we show that exosomes derived from human umbilical cord mesenchymal stem cells (hucMSCs-Exos) can enhance fetal lung development in mice by delivering specific contents. Briefly, hucMSCs-Exos were extracted using ultracentrifugation and identified by transmission electron microscopy (TEM), flow cytometry, Western blot (WB), and nanoparticle tracking analysis (NTA). These exosomes were then administered to pregnant mice via tail vein injection. Embryonic lung tissues were collected at E13.5 and E18.5 via cesarean section and analyzed using hematoxylin-eosin (HE) staining, immunofluorescence, and TEM. Proteomic analysis was conducted to identify protein components in the exosomes, and WB was used to assess protein expression changes. hucMSCs-Exos from full-term infants were more effective in promoting cell proliferation than those from preterm infants. In vivo, full-term hucMSCs-Exos significantly enhanced alveolarization in fetal lung tissues. Proteomic analysis revealed higher Wnt5a expression in full-term hucMSCs-Exos, and further experiments confirmed a direct interaction between Wnt5a and ROCK1. WB also showed increased expression of the autophagy marker LC3B in the lung tissues of mice treated with full-term exosomes. In conclusion, term hucMSCs-Exos may directly regulate the phosphorylation of ROCK1 in mouse lung tissue through naturally enriched Wnt5a, thus promoting autophagy of AT2 cells and lamellar body development, and ultimately enhance the alveolarization and reducing the incidence of BPD in premature infants.</p>\",\"PeriodicalId\":21955,\"journal\":{\"name\":\"Stem Cell Reviews and Reports\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stem Cell Reviews and Reports\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s12015-024-10824-1\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stem Cell Reviews and Reports","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12015-024-10824-1","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
HucMSCs-derived Exosomes Promote Lung Development in Premature Birth via Wnt5a/ROCK1 Axis.
Bronchopulmonary dysplasia (BPD) frequently affects extremely preterm and low birth weight infants, with current treatments lacking specificity. Enhancing extra-uterine preterm alveoli development and repairing damage are crucial for BPD management. Here we show that exosomes derived from human umbilical cord mesenchymal stem cells (hucMSCs-Exos) can enhance fetal lung development in mice by delivering specific contents. Briefly, hucMSCs-Exos were extracted using ultracentrifugation and identified by transmission electron microscopy (TEM), flow cytometry, Western blot (WB), and nanoparticle tracking analysis (NTA). These exosomes were then administered to pregnant mice via tail vein injection. Embryonic lung tissues were collected at E13.5 and E18.5 via cesarean section and analyzed using hematoxylin-eosin (HE) staining, immunofluorescence, and TEM. Proteomic analysis was conducted to identify protein components in the exosomes, and WB was used to assess protein expression changes. hucMSCs-Exos from full-term infants were more effective in promoting cell proliferation than those from preterm infants. In vivo, full-term hucMSCs-Exos significantly enhanced alveolarization in fetal lung tissues. Proteomic analysis revealed higher Wnt5a expression in full-term hucMSCs-Exos, and further experiments confirmed a direct interaction between Wnt5a and ROCK1. WB also showed increased expression of the autophagy marker LC3B in the lung tissues of mice treated with full-term exosomes. In conclusion, term hucMSCs-Exos may directly regulate the phosphorylation of ROCK1 in mouse lung tissue through naturally enriched Wnt5a, thus promoting autophagy of AT2 cells and lamellar body development, and ultimately enhance the alveolarization and reducing the incidence of BPD in premature infants.
期刊介绍:
The purpose of Stem Cell Reviews and Reports is to cover contemporary and emerging areas in stem cell research and regenerative medicine. The journal will consider for publication:
i) solicited or unsolicited reviews of topical areas of stem cell biology that highlight, critique and synthesize recent important findings in the field.
ii) full length and short reports presenting original experimental work.
iii) translational stem cell studies describing results of clinical trials using stem cells as therapeutics.
iv) papers focused on diseases of stem cells.
v) hypothesis and commentary articles as opinion-based pieces in which authors can propose a new theory, interpretation of a controversial area in stem cell biology, or a stem cell biology question or paradigm. These articles contain more speculation than reviews, but they should be based on solid rationale.
vi) protocols as peer-reviewed procedures that provide step-by-step descriptions, outlined in sufficient detail, so that both experts and novices can apply them to their own research.
vii) letters to the editor and correspondence.
In order to facilitate this exchange of scientific information and exciting novel ideas, the journal has created five thematic sections, focusing on:
i) the role of adult stem cells in tissue regeneration;
ii) progress in research on induced pluripotent stem cells, embryonic stem cells and mechanism governing embryogenesis and tissue development;
iii) the role of microenvironment and extracellular microvesicles in directing the fate of stem cells;
iv) mechanisms of stem cell trafficking, stem cell mobilization and homing with special emphasis on hematopoiesis;
v) the role of stem cells in aging processes and cancerogenesis.