Thanh-Hung Nguyen, Hoang-Thach Vuong, Jim Shiau, Trung Nguyen-Thoi, Dinh-Hung Nguyen, Tan Nguyen
{"title":"利用机器学习模型优化使用再生骨料和 CFRP 的 RC 梁的抗弯强度。","authors":"Thanh-Hung Nguyen, Hoang-Thach Vuong, Jim Shiau, Trung Nguyen-Thoi, Dinh-Hung Nguyen, Tan Nguyen","doi":"10.1038/s41598-024-79287-1","DOIUrl":null,"url":null,"abstract":"<p><p>This paper investigates the flexural bearing behavior of reinforced concrete beams through experimental analysis and advanced machine learning predictive models. The primary problem centers around understanding how varying compositions of construction materials, particularly the inclusion of recycled aggregates and carbon fiber-reinforced polymer (CFRP), affect the structural performance of concrete beams. Eight beams, including those with natural aggregates, recycled aggregates, fly ash, and CFRP, were tested. The study employs state-of-the-art machine learning frameworks, including Random Forest Regressor (RFR), XGBoost (XGB), and LightGBM (LGBM). The formation of these models involved data acquisition from experiments, preprocessing of key input features (such as rebars area, cement portion, recycled and natural aggregate masses, silica fume, fly ash, compressive strength, and CFRP presence), model selection, and hyperparameter tuning using Pareto optimization. The models were then evaluated using performance metrics like Mean Squared Error (MSE), Mean Absolute Error (MAE), and coefficient of determination (R<sup>2</sup>). Outputs focus on load-induced deflection and mid-span displacement. With a dataset of 4851 samples, the optimized models demonstrated excellent performance. The experimental results revealed substantial enhancements in both compressive strength and load-bearing capacity, notably observed in beams incorporating 70% recycled aggregate and 10% silica fume. These beams exhibited a remarkable increase in compressive strength of up to 53.03% and a 7% boost in load-bearing capacity compared to those without recycled aggregate. By integrating experimental analysis with advanced computational techniques, this study advances the understanding of eco-friendly construction materials and their performance, shedding light on the intricate interactions between sustainable construction materials and the flexural bearing behavior of beams.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"14 1","pages":"28621"},"PeriodicalIF":3.8000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing flexural strength of RC beams with recycled aggregates and CFRP using machine learning models.\",\"authors\":\"Thanh-Hung Nguyen, Hoang-Thach Vuong, Jim Shiau, Trung Nguyen-Thoi, Dinh-Hung Nguyen, Tan Nguyen\",\"doi\":\"10.1038/s41598-024-79287-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This paper investigates the flexural bearing behavior of reinforced concrete beams through experimental analysis and advanced machine learning predictive models. The primary problem centers around understanding how varying compositions of construction materials, particularly the inclusion of recycled aggregates and carbon fiber-reinforced polymer (CFRP), affect the structural performance of concrete beams. Eight beams, including those with natural aggregates, recycled aggregates, fly ash, and CFRP, were tested. The study employs state-of-the-art machine learning frameworks, including Random Forest Regressor (RFR), XGBoost (XGB), and LightGBM (LGBM). The formation of these models involved data acquisition from experiments, preprocessing of key input features (such as rebars area, cement portion, recycled and natural aggregate masses, silica fume, fly ash, compressive strength, and CFRP presence), model selection, and hyperparameter tuning using Pareto optimization. The models were then evaluated using performance metrics like Mean Squared Error (MSE), Mean Absolute Error (MAE), and coefficient of determination (R<sup>2</sup>). Outputs focus on load-induced deflection and mid-span displacement. With a dataset of 4851 samples, the optimized models demonstrated excellent performance. The experimental results revealed substantial enhancements in both compressive strength and load-bearing capacity, notably observed in beams incorporating 70% recycled aggregate and 10% silica fume. These beams exhibited a remarkable increase in compressive strength of up to 53.03% and a 7% boost in load-bearing capacity compared to those without recycled aggregate. By integrating experimental analysis with advanced computational techniques, this study advances the understanding of eco-friendly construction materials and their performance, shedding light on the intricate interactions between sustainable construction materials and the flexural bearing behavior of beams.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"14 1\",\"pages\":\"28621\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-024-79287-1\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-024-79287-1","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Optimizing flexural strength of RC beams with recycled aggregates and CFRP using machine learning models.
This paper investigates the flexural bearing behavior of reinforced concrete beams through experimental analysis and advanced machine learning predictive models. The primary problem centers around understanding how varying compositions of construction materials, particularly the inclusion of recycled aggregates and carbon fiber-reinforced polymer (CFRP), affect the structural performance of concrete beams. Eight beams, including those with natural aggregates, recycled aggregates, fly ash, and CFRP, were tested. The study employs state-of-the-art machine learning frameworks, including Random Forest Regressor (RFR), XGBoost (XGB), and LightGBM (LGBM). The formation of these models involved data acquisition from experiments, preprocessing of key input features (such as rebars area, cement portion, recycled and natural aggregate masses, silica fume, fly ash, compressive strength, and CFRP presence), model selection, and hyperparameter tuning using Pareto optimization. The models were then evaluated using performance metrics like Mean Squared Error (MSE), Mean Absolute Error (MAE), and coefficient of determination (R2). Outputs focus on load-induced deflection and mid-span displacement. With a dataset of 4851 samples, the optimized models demonstrated excellent performance. The experimental results revealed substantial enhancements in both compressive strength and load-bearing capacity, notably observed in beams incorporating 70% recycled aggregate and 10% silica fume. These beams exhibited a remarkable increase in compressive strength of up to 53.03% and a 7% boost in load-bearing capacity compared to those without recycled aggregate. By integrating experimental analysis with advanced computational techniques, this study advances the understanding of eco-friendly construction materials and their performance, shedding light on the intricate interactions between sustainable construction materials and the flexural bearing behavior of beams.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.