催化试管婴儿结果预测:探索先进的机器学习范式,提高成功率预测。

IF 3 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Frontiers in Artificial Intelligence Pub Date : 2024-11-05 eCollection Date: 2024-01-01 DOI:10.3389/frai.2024.1392611
Seyed-Ali Sadegh-Zadeh, Sanaz Khanjani, Shima Javanmardi, Bita Bayat, Zahra Naderi, Amir M Hajiyavand
{"title":"催化试管婴儿结果预测:探索先进的机器学习范式,提高成功率预测。","authors":"Seyed-Ali Sadegh-Zadeh, Sanaz Khanjani, Shima Javanmardi, Bita Bayat, Zahra Naderi, Amir M Hajiyavand","doi":"10.3389/frai.2024.1392611","DOIUrl":null,"url":null,"abstract":"<p><p>This study addresses the research problem of enhancing <i>In-Vitro</i> Fertilization (IVF) success rate prediction by integrating advanced machine learning paradigms with gynecological expertise. The methodology involves the analysis of comprehensive datasets from 2017 to 2018 and 2010-2016. Machine learning models, including Logistic Regression, Gaussian NB, SVM, MLP, KNN, and ensemble models like Random Forest, AdaBoost, Logit Boost, RUS Boost, and RSM, were employed. Key findings reveal the significance of patient demographics, infertility factors, and treatment protocols in IVF success prediction. Notably, ensemble learning methods demonstrated high accuracy, with Logit Boost achieving an accuracy of 96.35%. The implications of this research span clinical decision support, patient counseling, and data preprocessing techniques, highlighting the potential for personalized IVF treatments and continuous monitoring. The study underscores the importance of collaboration between gynecologists and data scientists to optimize IVF outcomes. Prospective studies and external validation are suggested as future directions, promising to further revolutionize fertility treatments and offer hope to couples facing infertility challenges.</p>","PeriodicalId":33315,"journal":{"name":"Frontiers in Artificial Intelligence","volume":"7 ","pages":"1392611"},"PeriodicalIF":3.0000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11573753/pdf/","citationCount":"0","resultStr":"{\"title\":\"Catalyzing IVF outcome prediction: exploring advanced machine learning paradigms for enhanced success rate prognostication.\",\"authors\":\"Seyed-Ali Sadegh-Zadeh, Sanaz Khanjani, Shima Javanmardi, Bita Bayat, Zahra Naderi, Amir M Hajiyavand\",\"doi\":\"10.3389/frai.2024.1392611\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study addresses the research problem of enhancing <i>In-Vitro</i> Fertilization (IVF) success rate prediction by integrating advanced machine learning paradigms with gynecological expertise. The methodology involves the analysis of comprehensive datasets from 2017 to 2018 and 2010-2016. Machine learning models, including Logistic Regression, Gaussian NB, SVM, MLP, KNN, and ensemble models like Random Forest, AdaBoost, Logit Boost, RUS Boost, and RSM, were employed. Key findings reveal the significance of patient demographics, infertility factors, and treatment protocols in IVF success prediction. Notably, ensemble learning methods demonstrated high accuracy, with Logit Boost achieving an accuracy of 96.35%. The implications of this research span clinical decision support, patient counseling, and data preprocessing techniques, highlighting the potential for personalized IVF treatments and continuous monitoring. The study underscores the importance of collaboration between gynecologists and data scientists to optimize IVF outcomes. Prospective studies and external validation are suggested as future directions, promising to further revolutionize fertility treatments and offer hope to couples facing infertility challenges.</p>\",\"PeriodicalId\":33315,\"journal\":{\"name\":\"Frontiers in Artificial Intelligence\",\"volume\":\"7 \",\"pages\":\"1392611\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11573753/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/frai.2024.1392611\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frai.2024.1392611","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

本研究通过将先进的机器学习范式与妇科专业知识相结合,解决了提高体外受精(IVF)成功率预测的研究问题。研究方法包括分析 2017 年至 2018 年和 2010 年至 2016 年的综合数据集。采用的机器学习模型包括 Logistic Regression、Gaussian NB、SVM、MLP、KNN,以及随机森林、AdaBoost、Logit Boost、RUS Boost 和 RSM 等集合模型。主要研究结果表明,患者人口统计学、不孕不育因素和治疗方案在预测试管婴儿成功率方面具有重要意义。值得注意的是,集合学习方法表现出了很高的准确性,其中 Logit Boost 的准确性达到了 96.35%。这项研究的意义涵盖临床决策支持、患者咨询和数据预处理技术,凸显了个性化试管婴儿治疗和持续监测的潜力。这项研究强调了妇科医生和数据科学家合作优化试管婴儿结果的重要性。研究建议将前瞻性研究和外部验证作为未来的发展方向,有望进一步革新不孕不育治疗,为面临不孕不育挑战的夫妇带来希望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Catalyzing IVF outcome prediction: exploring advanced machine learning paradigms for enhanced success rate prognostication.

This study addresses the research problem of enhancing In-Vitro Fertilization (IVF) success rate prediction by integrating advanced machine learning paradigms with gynecological expertise. The methodology involves the analysis of comprehensive datasets from 2017 to 2018 and 2010-2016. Machine learning models, including Logistic Regression, Gaussian NB, SVM, MLP, KNN, and ensemble models like Random Forest, AdaBoost, Logit Boost, RUS Boost, and RSM, were employed. Key findings reveal the significance of patient demographics, infertility factors, and treatment protocols in IVF success prediction. Notably, ensemble learning methods demonstrated high accuracy, with Logit Boost achieving an accuracy of 96.35%. The implications of this research span clinical decision support, patient counseling, and data preprocessing techniques, highlighting the potential for personalized IVF treatments and continuous monitoring. The study underscores the importance of collaboration between gynecologists and data scientists to optimize IVF outcomes. Prospective studies and external validation are suggested as future directions, promising to further revolutionize fertility treatments and offer hope to couples facing infertility challenges.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.10
自引率
2.50%
发文量
272
审稿时长
13 weeks
期刊最新文献
Catalyzing IVF outcome prediction: exploring advanced machine learning paradigms for enhanced success rate prognostication. Predicting patient reported outcome measures: a scoping review for the artificial intelligence-guided patient preference predictor. A generative AI-driven interactive listening assessment task. Enhancing random forest predictive performance for foot and mouth disease outbreaks in Uganda: a calibrated uncertainty prediction approach for varying distributions. Using genAI in education: the case for critical thinking.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1