通过随机模拟和信息几何学研究低约束到高约束转变的非微扰理论:相关性和因果分析。

IF 2.2 3区 物理与天体物理 Q2 PHYSICS, FLUIDS & PLASMAS Physical Review E Pub Date : 2024-10-01 DOI:10.1103/PhysRevE.110.045209
Eun-Jin Kim, Abhiram Anand Thiruthummal
{"title":"通过随机模拟和信息几何学研究低约束到高约束转变的非微扰理论:相关性和因果分析。","authors":"Eun-Jin Kim, Abhiram Anand Thiruthummal","doi":"10.1103/PhysRevE.110.045209","DOIUrl":null,"url":null,"abstract":"<p><p>The low-to-high confinement (L-H) transition signifies one of the important plasma bifurcations occurring in magnetic confinement plasmas, with vital implications for exploring high-performance regimes in future fusion reactors. In particular, the accurate turbulence statistical description of self-regulation and causal relation among turbulence and shear flows is essential for accessing enhanced plasma performance and advanced operation scenarios. To address this, we provide a nonperturbative theory of the L-H transition by stochastic simulations of a reduced L-H transition model and detailed statistical analysis. By calculating time-dependent probability density functions (PDFs) of turbulence, zonal flows, and the mean pressure gradient, we elucidate how statistical properties change over time with the help of the information geometry theory (information rate, causal information rate), highlighting its utility in capturing self-regulation and causal relation among turbulence, zonal flow shears, and the mean flow shears. Furthermore, stochastic noises in turbulence, zonal flows, and/or input power are shown to induce uncertainty in the power threshold Q_{c} above which the L-H transition occurs while leading to a rather gradual L-H transition. A time-dependent PDF of power loss over the L-H transition is presented.</p>","PeriodicalId":48698,"journal":{"name":"Physical Review E","volume":"110 4-2","pages":"045209"},"PeriodicalIF":2.2000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonperturbative theory of the low-to-high confinement transition through stochastic simulations and information geometry: Correlation and causal analyses.\",\"authors\":\"Eun-Jin Kim, Abhiram Anand Thiruthummal\",\"doi\":\"10.1103/PhysRevE.110.045209\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The low-to-high confinement (L-H) transition signifies one of the important plasma bifurcations occurring in magnetic confinement plasmas, with vital implications for exploring high-performance regimes in future fusion reactors. In particular, the accurate turbulence statistical description of self-regulation and causal relation among turbulence and shear flows is essential for accessing enhanced plasma performance and advanced operation scenarios. To address this, we provide a nonperturbative theory of the L-H transition by stochastic simulations of a reduced L-H transition model and detailed statistical analysis. By calculating time-dependent probability density functions (PDFs) of turbulence, zonal flows, and the mean pressure gradient, we elucidate how statistical properties change over time with the help of the information geometry theory (information rate, causal information rate), highlighting its utility in capturing self-regulation and causal relation among turbulence, zonal flow shears, and the mean flow shears. Furthermore, stochastic noises in turbulence, zonal flows, and/or input power are shown to induce uncertainty in the power threshold Q_{c} above which the L-H transition occurs while leading to a rather gradual L-H transition. A time-dependent PDF of power loss over the L-H transition is presented.</p>\",\"PeriodicalId\":48698,\"journal\":{\"name\":\"Physical Review E\",\"volume\":\"110 4-2\",\"pages\":\"045209\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review E\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/PhysRevE.110.045209\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, FLUIDS & PLASMAS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevE.110.045209","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0

摘要

低束缚到高束缚(L-H)转变是磁束缚等离子体中发生的重要等离子体分岔之一,对探索未来聚变反应堆的高性能系统具有重要意义。特别是,准确描述湍流和剪切流之间的自我调节和因果关系的湍流统计,对于获得增强的等离子体性能和先进的运行方案至关重要。为此,我们通过对简化的 L-H 转换模型进行随机模拟和详细的统计分析,提供了 L-H 转换的非珀尔帖理论。通过计算湍流、带状流和平均压力梯度的随时间变化的概率密度函数(PDF),我们借助信息几何理论(信息率、因果信息率)阐明了统计特性是如何随时间变化的,突出了其在捕捉湍流、带状流剪切和平均流剪切之间的自我调节和因果关系方面的实用性。此外,湍流、带状流和/或输入功率中的随机噪声会导致功率阈值 Q_{c} 的不确定性,超过该阈值就会发生 L-H 转换,同时导致相当渐进的 L-H 转换。文中给出了 L-H 转换过程中功率损失随时间变化的 PDF。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Nonperturbative theory of the low-to-high confinement transition through stochastic simulations and information geometry: Correlation and causal analyses.

The low-to-high confinement (L-H) transition signifies one of the important plasma bifurcations occurring in magnetic confinement plasmas, with vital implications for exploring high-performance regimes in future fusion reactors. In particular, the accurate turbulence statistical description of self-regulation and causal relation among turbulence and shear flows is essential for accessing enhanced plasma performance and advanced operation scenarios. To address this, we provide a nonperturbative theory of the L-H transition by stochastic simulations of a reduced L-H transition model and detailed statistical analysis. By calculating time-dependent probability density functions (PDFs) of turbulence, zonal flows, and the mean pressure gradient, we elucidate how statistical properties change over time with the help of the information geometry theory (information rate, causal information rate), highlighting its utility in capturing self-regulation and causal relation among turbulence, zonal flow shears, and the mean flow shears. Furthermore, stochastic noises in turbulence, zonal flows, and/or input power are shown to induce uncertainty in the power threshold Q_{c} above which the L-H transition occurs while leading to a rather gradual L-H transition. A time-dependent PDF of power loss over the L-H transition is presented.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Review E
Physical Review E PHYSICS, FLUIDS & PLASMASPHYSICS, MATHEMAT-PHYSICS, MATHEMATICAL
CiteScore
4.50
自引率
16.70%
发文量
2110
期刊介绍: Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.
期刊最新文献
Applications of a Rayleigh-Taylor model to direct-drive laser fusion. Geometric thermodynamics of collapse of gels. Comparison of the microcanonical population annealing algorithm with the Wang-Landau algorithm. Dense plasma opacity from excited states method. Harmonically trapped inertial run-and-tumble particle in one dimension.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1