Mohamad K Hammoud, Celina Meena, Raimund Dietze, Nathalie Hoffmann, Witold Szymanski, Florian Finkernagel, Andrea Nist, Thorsten Stiewe, Johannes Graumann, Elke Pogge von Strandmann, Rolf Müller
{"title":"花生四烯酸会破坏由活化受体和活性氧驱动的信号通路,从而损害自然杀伤细胞的功能。","authors":"Mohamad K Hammoud, Celina Meena, Raimund Dietze, Nathalie Hoffmann, Witold Szymanski, Florian Finkernagel, Andrea Nist, Thorsten Stiewe, Johannes Graumann, Elke Pogge von Strandmann, Rolf Müller","doi":"10.1186/s12964-024-01940-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>High levels of the polyunsaturated fatty acid arachidonic acid (AA) within the ovarian carcinoma (OC) microenvironment correlate with reduced relapse-free survival. Furthermore, OC progression is tied to compromised immunosurveillance, partially attributed to the impairment of natural killer (NK) cells. However, potential connections between AA and NK cell dysfunction in OC have not been studied.</p><p><strong>Methods: </strong>We employed a combination of phosphoproteomics, transcriptional profiling and biological assays to investigate AA's impact on NK cell functions.</p><p><strong>Results: </strong>AA (i) disrupts interleukin-2/15-mediated expression of pro-inflammatory genes by inhibiting STAT1-dependent signaling, (ii) hampers signaling by cytotoxicity receptors through disruption of their surface expression, (iii) diminishes phosphorylation of NKG2D-induced protein kinases, including ERK1/2, LYN, MSK1/2 and STAT1, and (iv) alters reactive oxygen species production by transcriptionally upregulating detoxification. These modifications lead to a cessation of NK cell proliferation and a reduction in cytotoxicity.</p><p><strong>Conclusion: </strong>Our findings highlight significant AA-induced alterations in the signaling network that regulates NK cell activity. As low expression of several NK cell receptors correlates with shorter OC patient survival, these findings suggest a functional linkage between AA, NK cell dysfunction and OC progression.</p>","PeriodicalId":55268,"journal":{"name":"Cell Communication and Signaling","volume":"22 1","pages":"555"},"PeriodicalIF":8.2000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Arachidonic acid impairs natural killer cell functions by disrupting signaling pathways driven by activating receptors and reactive oxygen species.\",\"authors\":\"Mohamad K Hammoud, Celina Meena, Raimund Dietze, Nathalie Hoffmann, Witold Szymanski, Florian Finkernagel, Andrea Nist, Thorsten Stiewe, Johannes Graumann, Elke Pogge von Strandmann, Rolf Müller\",\"doi\":\"10.1186/s12964-024-01940-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>High levels of the polyunsaturated fatty acid arachidonic acid (AA) within the ovarian carcinoma (OC) microenvironment correlate with reduced relapse-free survival. Furthermore, OC progression is tied to compromised immunosurveillance, partially attributed to the impairment of natural killer (NK) cells. However, potential connections between AA and NK cell dysfunction in OC have not been studied.</p><p><strong>Methods: </strong>We employed a combination of phosphoproteomics, transcriptional profiling and biological assays to investigate AA's impact on NK cell functions.</p><p><strong>Results: </strong>AA (i) disrupts interleukin-2/15-mediated expression of pro-inflammatory genes by inhibiting STAT1-dependent signaling, (ii) hampers signaling by cytotoxicity receptors through disruption of their surface expression, (iii) diminishes phosphorylation of NKG2D-induced protein kinases, including ERK1/2, LYN, MSK1/2 and STAT1, and (iv) alters reactive oxygen species production by transcriptionally upregulating detoxification. These modifications lead to a cessation of NK cell proliferation and a reduction in cytotoxicity.</p><p><strong>Conclusion: </strong>Our findings highlight significant AA-induced alterations in the signaling network that regulates NK cell activity. As low expression of several NK cell receptors correlates with shorter OC patient survival, these findings suggest a functional linkage between AA, NK cell dysfunction and OC progression.</p>\",\"PeriodicalId\":55268,\"journal\":{\"name\":\"Cell Communication and Signaling\",\"volume\":\"22 1\",\"pages\":\"555\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Communication and Signaling\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s12964-024-01940-z\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Communication and Signaling","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12964-024-01940-z","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
背景:卵巢癌(OC)微环境中的多不饱和脂肪酸花生四烯酸(AA)含量高与无复发生存率降低有关。此外,卵巢癌的进展与免疫监视功能受损有关,部分原因是自然杀伤(NK)细胞受损。然而,我们尚未研究OC中AA和NK细胞功能障碍之间的潜在联系:方法:我们结合磷蛋白组学、转录谱分析和生物学测定来研究 AA 对 NK 细胞功能的影响:结果:AA(i)通过抑制 STAT1 依赖性信号转导,破坏白细胞介素-2/15 介导的促炎基因表达;(ii)通过破坏细胞毒性受体的表面表达,阻碍其信号转导;(iii)减少 NKG2D 诱导的蛋白激酶(包括 ERK1/2、LYN、MSK1/2 和 STAT1)的磷酸化;(iv)通过转录上调解毒功能,改变活性氧的产生。这些改变导致 NK 细胞增殖停止,细胞毒性降低:我们的研究结果突显了 AA 诱导的调节 NK 细胞活性的信号网络的重大变化。由于几种NK细胞受体的低表达与OC患者的生存期缩短有关,这些发现表明AA、NK细胞功能障碍和OC进展之间存在功能性联系。
Arachidonic acid impairs natural killer cell functions by disrupting signaling pathways driven by activating receptors and reactive oxygen species.
Background: High levels of the polyunsaturated fatty acid arachidonic acid (AA) within the ovarian carcinoma (OC) microenvironment correlate with reduced relapse-free survival. Furthermore, OC progression is tied to compromised immunosurveillance, partially attributed to the impairment of natural killer (NK) cells. However, potential connections between AA and NK cell dysfunction in OC have not been studied.
Methods: We employed a combination of phosphoproteomics, transcriptional profiling and biological assays to investigate AA's impact on NK cell functions.
Results: AA (i) disrupts interleukin-2/15-mediated expression of pro-inflammatory genes by inhibiting STAT1-dependent signaling, (ii) hampers signaling by cytotoxicity receptors through disruption of their surface expression, (iii) diminishes phosphorylation of NKG2D-induced protein kinases, including ERK1/2, LYN, MSK1/2 and STAT1, and (iv) alters reactive oxygen species production by transcriptionally upregulating detoxification. These modifications lead to a cessation of NK cell proliferation and a reduction in cytotoxicity.
Conclusion: Our findings highlight significant AA-induced alterations in the signaling network that regulates NK cell activity. As low expression of several NK cell receptors correlates with shorter OC patient survival, these findings suggest a functional linkage between AA, NK cell dysfunction and OC progression.
期刊介绍:
Cell Communication and Signaling (CCS) is a peer-reviewed, open-access scientific journal that focuses on cellular signaling pathways in both normal and pathological conditions. It publishes original research, reviews, and commentaries, welcoming studies that utilize molecular, morphological, biochemical, structural, and cell biology approaches. CCS also encourages interdisciplinary work and innovative models, including in silico, in vitro, and in vivo approaches, to facilitate investigations of cell signaling pathways, networks, and behavior.
Starting from January 2019, CCS is proud to announce its affiliation with the International Cell Death Society. The journal now encourages submissions covering all aspects of cell death, including apoptotic and non-apoptotic mechanisms, cell death in model systems, autophagy, clearance of dying cells, and the immunological and pathological consequences of dying cells in the tissue microenvironment.